|
| 1 | + |
| 2 | + |
| 3 | +Run LLMs using [vLLM](https://docs.vllm.ai) with an OpenAI-compatible API |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +[](https://www.runpod.io/console/hub/runpod-workers/worker-vllm) |
| 8 | + |
| 9 | +--- |
| 10 | + |
| 11 | +## Endpoint Configuration |
| 12 | + |
| 13 | +All behaviour is controlled through environment variables: |
| 14 | + |
| 15 | +| Environment Variable | Description | Default | Options | |
| 16 | +| ----------------------------------- | ------------------------------------------------- | ------------------- | ------------------------------------------------------------------ | |
| 17 | +| `MODEL_NAME` | Path of the model weights | "facebook/opt-125m" | Local folder or Hugging Face repo ID | |
| 18 | +| `HF_TOKEN` | HuggingFace access token for gated/private models | | Your HuggingFace access token | |
| 19 | +| `MAX_MODEL_LEN` | Model's maximum context length | | Integer (e.g., 4096) | |
| 20 | +| `QUANTIZATION` | Quantization method | | "awq", "gptq", "squeezellm", "bitsandbytes" | |
| 21 | +| `TENSOR_PARALLEL_SIZE` | Number of GPUs | 1 | Integer | |
| 22 | +| `GPU_MEMORY_UTILIZATION` | Fraction of GPU memory to use | 0.95 | Float between 0.0 and 1.0 | |
| 23 | +| `MAX_NUM_SEQS` | Maximum number of sequences per iteration | 256 | Integer | |
| 24 | +| `CUSTOM_CHAT_TEMPLATE` | Custom chat template override | | Jinja2 template string | |
| 25 | +| `ENABLE_AUTO_TOOL_CHOICE` | Enable automatic tool selection | false | boolean (true or false) | |
| 26 | +| `TOOL_CALL_PARSER` | Parser for tool calls | | "mistral", "hermes", "llama3_json", "granite", "deepseek_v3", etc. | |
| 27 | +| `OPENAI_SERVED_MODEL_NAME_OVERRIDE` | Override served model name in API | | String | |
| 28 | +| `MAX_CONCURRENCY` | Maximum concurrent requests | 300 | Integer | |
| 29 | + |
| 30 | +For complete configuration options, see the [full configuration documentation](https://github.com/runpod-workers/worker-vllm/blob/main/docs/configuration.md). |
| 31 | + |
| 32 | +## API Usage |
| 33 | + |
| 34 | +This worker supports two API formats: **RunPod native** and **OpenAI-compatible**. |
| 35 | + |
| 36 | +### RunPod Native API |
| 37 | + |
| 38 | +For testing directly in the RunPod UI, use these examples in your endpoint's request tab. |
| 39 | + |
| 40 | +#### Chat Completions |
| 41 | + |
| 42 | +```json |
| 43 | +{ |
| 44 | + "input": { |
| 45 | + "messages": [ |
| 46 | + { "role": "system", "content": "You are a helpful assistant." }, |
| 47 | + { "role": "user", "content": "What is the capital of France?" } |
| 48 | + ], |
| 49 | + "sampling_params": { |
| 50 | + "max_tokens": 100, |
| 51 | + "temperature": 0.7 |
| 52 | + } |
| 53 | + } |
| 54 | +} |
| 55 | +``` |
| 56 | + |
| 57 | +#### Chat Completions (Streaming) |
| 58 | + |
| 59 | +```json |
| 60 | +{ |
| 61 | + "input": { |
| 62 | + "messages": [ |
| 63 | + { "role": "user", "content": "Write a short story about a robot." } |
| 64 | + ], |
| 65 | + "sampling_params": { |
| 66 | + "max_tokens": 500, |
| 67 | + "temperature": 0.8 |
| 68 | + }, |
| 69 | + "stream": true |
| 70 | + } |
| 71 | +} |
| 72 | +``` |
| 73 | + |
| 74 | +#### Text Generation |
| 75 | + |
| 76 | +For direct text generation without chat format: |
| 77 | + |
| 78 | +```json |
| 79 | +{ |
| 80 | + "input": { |
| 81 | + "prompt": "The capital of France is", |
| 82 | + "sampling_params": { |
| 83 | + "max_tokens": 64, |
| 84 | + "temperature": 0.0 |
| 85 | + } |
| 86 | + } |
| 87 | +} |
| 88 | +``` |
| 89 | + |
| 90 | +#### List Models |
| 91 | + |
| 92 | +```json |
| 93 | +{ |
| 94 | + "input": { |
| 95 | + "openai_route": "/v1/models" |
| 96 | + } |
| 97 | +} |
| 98 | +``` |
| 99 | + |
| 100 | +--- |
| 101 | + |
| 102 | +### OpenAI-Compatible API |
| 103 | + |
| 104 | +For external clients and SDKs, use the `/openai/v1` path prefix with your RunPod API key. |
| 105 | + |
| 106 | +#### Chat Completions |
| 107 | + |
| 108 | +**Path:** `/openai/v1/chat/completions` |
| 109 | + |
| 110 | +```json |
| 111 | +{ |
| 112 | + "model": "meta-llama/Llama-2-7b-chat-hf", |
| 113 | + "messages": [ |
| 114 | + { "role": "system", "content": "You are a helpful assistant." }, |
| 115 | + { "role": "user", "content": "What is the capital of France?" } |
| 116 | + ], |
| 117 | + "max_tokens": 100, |
| 118 | + "temperature": 0.7 |
| 119 | +} |
| 120 | +``` |
| 121 | + |
| 122 | +#### Chat Completions (Streaming) |
| 123 | + |
| 124 | +```json |
| 125 | +{ |
| 126 | + "model": "meta-llama/Llama-2-7b-chat-hf", |
| 127 | + "messages": [ |
| 128 | + { "role": "user", "content": "Write a short story about a robot." } |
| 129 | + ], |
| 130 | + "max_tokens": 500, |
| 131 | + "temperature": 0.8, |
| 132 | + "stream": true |
| 133 | +} |
| 134 | +``` |
| 135 | + |
| 136 | +#### Text Completions |
| 137 | + |
| 138 | +**Path:** `/openai/v1/completions` |
| 139 | + |
| 140 | +```json |
| 141 | +{ |
| 142 | + "model": "meta-llama/Llama-2-7b-chat-hf", |
| 143 | + "prompt": "The capital of France is", |
| 144 | + "max_tokens": 100, |
| 145 | + "temperature": 0.7 |
| 146 | +} |
| 147 | +``` |
| 148 | + |
| 149 | +#### List Models |
| 150 | + |
| 151 | +**Path:** `/openai/v1/models` |
| 152 | + |
| 153 | +```json |
| 154 | +{} |
| 155 | +``` |
| 156 | + |
| 157 | +#### Response Format |
| 158 | + |
| 159 | +Both APIs return the same response format: |
| 160 | + |
| 161 | +```json |
| 162 | +{ |
| 163 | + "choices": [ |
| 164 | + { |
| 165 | + "index": 0, |
| 166 | + "message": { "role": "assistant", "content": "Paris." }, |
| 167 | + "finish_reason": "stop" |
| 168 | + } |
| 169 | + ], |
| 170 | + "usage": { "prompt_tokens": 9, "completion_tokens": 1, "total_tokens": 10 } |
| 171 | +} |
| 172 | +``` |
| 173 | + |
| 174 | +--- |
| 175 | + |
| 176 | +## Usage |
| 177 | + |
| 178 | +Below are minimal `python` snippets so you can copy-paste to get started quickly. |
| 179 | + |
| 180 | +> Replace `<ENDPOINT_ID>` with your endpoint ID and `<API_KEY>` with a [RunPod API key](https://docs.runpod.io/get-started/api-keys). |
| 181 | +
|
| 182 | +### OpenAI compatible API |
| 183 | + |
| 184 | +Minimal Python example using the official `openai` SDK: |
| 185 | + |
| 186 | +```python |
| 187 | +from openai import OpenAI |
| 188 | +import os |
| 189 | + |
| 190 | +# Initialize the OpenAI Client with your RunPod API Key and Endpoint URL |
| 191 | +client = OpenAI( |
| 192 | + api_key=os.getenv("RUNPOD_API_KEY"), |
| 193 | + base_url=f"https://api.runpod.ai/v2/<ENDPOINT_ID>/openai/v1", |
| 194 | +) |
| 195 | +``` |
| 196 | + |
| 197 | +`Chat Completions (Non-Streaming)` |
| 198 | + |
| 199 | +```python |
| 200 | +response = client.chat.completions.create( |
| 201 | + model="meta-llama/Llama-2-7b-chat-hf", |
| 202 | + messages=[{"role": "user", "content": "Explain quantum computing in simple terms"}], |
| 203 | + temperature=0, |
| 204 | + max_tokens=100, |
| 205 | +) |
| 206 | +print(f"Response: {response.choices[0].message.content}") |
| 207 | +``` |
| 208 | + |
| 209 | +`Chat Completions (Streaming)` |
| 210 | + |
| 211 | +```python |
| 212 | +response_stream = client.chat.completions.create( |
| 213 | + model="meta-llama/Llama-2-7b-chat-hf", |
| 214 | + messages=[{"role": "user", "content": "Explain quantum computing in simple terms"}], |
| 215 | + temperature=0, |
| 216 | + max_tokens=100, |
| 217 | + stream=True |
| 218 | +) |
| 219 | +for response in response_stream: |
| 220 | + print(response.choices[0].delta.content or "", end="", flush=True) |
| 221 | +``` |
| 222 | + |
| 223 | +### RunPod Native API |
| 224 | + |
| 225 | +```python |
| 226 | +import requests |
| 227 | + |
| 228 | +response = requests.post( |
| 229 | + "https://api.runpod.ai/v2/<ENDPOINT_ID>/run", |
| 230 | + headers={"Authorization": "Bearer <API_KEY>"}, |
| 231 | + json={ |
| 232 | + "input": { |
| 233 | + "messages": [ |
| 234 | + {"role": "system", "content": "You are a helpful assistant."}, |
| 235 | + {"role": "user", "content": "Explain quantum computing in simple terms"} |
| 236 | + ], |
| 237 | + "sampling_params": { |
| 238 | + "temperature": 0.7, |
| 239 | + "max_tokens": 150 |
| 240 | + } |
| 241 | + } |
| 242 | + } |
| 243 | +) |
| 244 | + |
| 245 | +result = response.json() |
| 246 | +print(result["output"]) |
| 247 | +``` |
| 248 | + |
| 249 | +## Compatibility |
| 250 | + |
| 251 | +For supported models, see the [vLLM supported models documentation](https://docs.vllm.ai/en/latest/models/supported_models.html). |
| 252 | + |
| 253 | +Anything not recognized by worker-vllm is forwarded to vLLM's engine, so advanced options in the vLLM docs (guided generation, LoRA, speculative decoding, etc.) also work. |
| 254 | + |
| 255 | +## Documentation |
| 256 | + |
| 257 | +- **[🚀 Deployment Guide](https://docs.runpod.io/serverless/vllm/get-started)** - Step-by-step setup |
| 258 | +- **[📖 Configuration Reference](https://github.com/runpod-workers/worker-vllm/blob/main/docs/configuration.md)** - All environment variables |
| 259 | +- **[🏗️ Advanced Deployment](https://github.com/runpod-workers/worker-vllm/blob/main/docs/deployment.md)** - Custom builds and strategies |
| 260 | +- **[🔧 Development Guide](https://github.com/runpod-workers/worker-vllm/blob/main/docs/conventions.md)** - Architecture and patterns |
0 commit comments