Skip to content

Commit dd0e93c

Browse files
committed
fix nas & check
1 parent 862b278 commit dd0e93c

File tree

4 files changed

+275
-263
lines changed

4 files changed

+275
-263
lines changed

.Rhistory

Lines changed: 188 additions & 188 deletions
Original file line numberDiff line numberDiff line change
@@ -1,191 +1,3 @@
1-
# Name to codes of the same year
2-
regioncode(data_input = corruption$prefecture,
3-
convert_to = "code",
4-
year_from = 2019,
5-
year_to = 2019)
6-
# Name to name of a different year
7-
regioncode(data_input = corruption$prefecture,
8-
convert_to = "name",
9-
year_from = 2019,
10-
year_to = 1989)
11-
# Original full names
12-
corruption$prefecture
13-
fake_incomplete <- corruption$prefecture
14-
index_incomplete <- sample(seq(length(corruption$prefecture)), 7)
15-
fake_incomplete[index_incomplete] <- fake_incomplete[index_incomplete] |>
16-
substr(start = 1, stop = 2)
17-
fake_incomplete
18-
# Conversion to full names in 2008
19-
regioncode(data_input = fake_incomplete,
20-
convert_to = "name",
21-
year_from = 2019,
22-
year_to = 2008,
23-
incomplete_name = TRUE)
24-
names_municipality <- c("北京市", # Beijing, a municipality
25-
"海淀区", # A district of Beijing
26-
"上海市", # Shanghai, a municipality
27-
"静安区", # A district of Shanghai
28-
"济南市") # A prefecture of Shandong
29-
# When `zhixiashi` is FALSE, only the districts are recognized
30-
regioncode(data_input = names_municipality,
31-
year_from = 2019,
32-
year_to = 2019,
33-
convert_to = "code",
34-
zhixiashi = FALSE)
35-
# When `zhixiashi` is TRUE, municipalities are recognized
36-
regioncode(data_input = names_municipality,
37-
year_from = 2019,
38-
year_to = 2019,
39-
convert_to = "code",
40-
zhixiashi = TRUE)
41-
tibble(
42-
city = corruption$prefecture,
43-
rank1989 = regioncode(data_input = corruption$prefecture,
44-
year_from = 2019,
45-
year_to = 1989,
46-
convert_to="rank"),
47-
rank2014 = regioncode(data_input = corruption$prefecture,
48-
year_from = 2019,
49-
year_to = 2014,
50-
convert_to = "rank")
51-
)
52-
tibble(
53-
city = corruption$prefecture,
54-
cityPY = regioncode(data_input = corruption$prefecture,
55-
year_from = 2019,
56-
year_to = 1989,
57-
convert_to = "name",
58-
to_pinyin = TRUE
59-
),
60-
areaPY = regioncode(data_input = corruption$prefecture,
61-
year_from = 2019,
62-
year_to = 1989,
63-
convert_to = "area",
64-
to_pinyin = TRUE
65-
)
66-
)
67-
# Regions with special spelling
68-
regioncode(data_input = c("山西", "陕西", "内蒙古", "香港", "澳门"),
69-
year_from = 2019,
70-
year_to = 2008,
71-
convert_to = "name",
72-
incomplete_name = TRUE,
73-
province = TRUE,
74-
to_pinyin = TRUE
75-
)
76-
tibble(
77-
province = corruption$province_id,
78-
prov_name = regioncode(data_input = corruption$province_id,
79-
convert_to = "name",
80-
year_from = 2019,
81-
year_to = 1989,
82-
province = TRUE),
83-
prov_abbre = regioncode(data_input = corruption$province_id,
84-
convert_to = "codeToabbre",
85-
year_from = 2019,
86-
year_to = 1989,
87-
province = TRUE)
88-
)
89-
regioncode(data_input = corruption$prefecture,
90-
year_from = 2019,
91-
year_to = 1989,
92-
convert_to = "area")
93-
tibble(
94-
city = corruption$prefecture,
95-
dialectGroup = regioncode(data_input = corruption$prefecture,
96-
year_from = 2019,
97-
year_to = 1989,
98-
to_dialect = "dia_group"),
99-
dialectSubGroup = regioncode(data_input = corruption$prefecture,
100-
year_from = 2019,
101-
year_to = 1989,
102-
to_dialect = "dia_sub_group")
103-
)
104-
pkgbuild::check_build_tools(debug = TRUE)
105-
library(devtools)
106-
detach("package:devtools", unload = TRUE)
107-
install.packages("devtools")
108-
pkgbuild::check_build_tools(debug = TRUE)
109-
new<- import("~/Desktop/全国各市城镇人口构成.xlsx")
110-
if (!requireNamespace("dplyr", quietly = TRUE)) {
111-
install.packages("dplyr")
112-
}
113-
library(dplyr)
114-
if (!requireNamespace("pacman", quietly = TRUE)) {
115-
install.packages("pacman")
116-
}
117-
library(pacman)
118-
p_load("rio",
119-
"tidyverse")
120-
new<- import("~/Desktop/全国各市城镇人口构成.xlsx")
121-
View(new)
122-
str(new)
123-
new <- new %>%
124-
mutate(population= as.numeric(population))
125-
View(new)
126-
new<- import("~/Desktop/全国各市城镇人口构成.xlsx")
127-
new <- new %>%
128-
mutate(population= as.numeric(population))
129-
View(new)
130-
new<- import("~/Desktop/全国各市城镇人口构成.xlsx")
131-
View(new)
132-
new <- new %>%
133-
mutate(population= as.numeric(population))
134-
new<- import("~/Desktop/全国各市城镇人口构成.xlsx")
135-
new <- new %>%
136-
mutate(population= as.numeric(population))
137-
View(new)
138-
new <- new %>%
139-
mutate(population = as.numeric(population)) %>%
140-
arrange(code, year)
141-
View(new)
142-
generate_cityranking <- function(df) {
143-
year <- unique(df$year)
144-
year_cityranking <- paste0(year, "_cityranking")
145-
if (year %in% 1986:2013) {
146-
df[[year_cityranking]] <- case_when(
147-
df$population > 100 ~ "特大城市",
148-
df$population > 50 & df$population <= 100 ~ "大城市",
149-
df$population > 20 & df$population <= 50 ~ "中等城市",
150-
df$population <= 20 ~ "小城市",
151-
TRUE ~ NA_character_
152-
)
153-
} else if (year %in% 2014:2019) {
154-
df[[year_cityranking]] <- case_when(
155-
df$population > 1000 ~ "超大城市",
156-
df$population > 500 & df$population <= 1000 ~ "特大城市",
157-
df$population > 300 & df$population <= 500 ~ "I型大城市",
158-
df$population > 100 & df$population <= 300 ~ "II型大城市",
159-
df$population > 50 & df$population <= 100 ~ "中等城市",
160-
df$population > 20 & df$population <= 50 ~ "I型小城市",
161-
df$population <= 20 ~ "II型小城市",
162-
TRUE ~ NA_character_
163-
)
164-
}
165-
df <- select(df, -year, -population,-population_original)
166-
df
167-
}
168-
new_cityranking <- function(df, year) {
169-
year_cityranking <- paste0(year, "_cityranking")
170-
if (year %in% 1986:2013) {
171-
df[[year_cityranking]] <- case_when(
172-
df$population > 100 ~ "特大城市",
173-
df$population > 50 & df$population <= 100 ~ "大城市",
174-
df$population > 20 & df$population <= 50 ~ "中等城市",
175-
df$population <= 20 ~ "小城市",
176-
TRUE ~ NA_character_
177-
)
178-
} else if (year %in% 2014:2019) {
179-
df[[year_cityranking]] <- case_when(
180-
df$population > 1000 ~ "超大城市",
181-
df$population > 500 & df$population <= 1000 ~ "特大城市",
182-
df$population > 300 & df$population <= 500 ~ "I型大城市",
183-
df$population > 100 & df$population <= 300 ~ "II型大城市",
184-
df$population > 50 & df$population <= 100 ~ "中等城市",
185-
df$population > 20 & df$population <= 50 ~ "I型小城市",
186-
df$population <= 20 ~ "II型小城市",
187-
TRUE ~ NA_character_
188-
)
1891
}
1902
df <- df %>% select(-year, -population)
1913
return(df)
@@ -510,3 +322,191 @@ region_data <- read_excel("region_data.xlsx")
510322
View(region_data)
511323
View(corruption)
512324
save(region_data, corruption, file = "~/Documents/GitHub/regioncode/R/sysdata.rda")
325+
devtools::check()
326+
## ----setup, include=FALSE-----------------------------------------------------
327+
knitr::opts_chunk$set(message = FALSE, warning = FALSE)
328+
if(!require(regioncode)) install.packages("regioncode")
329+
library(regioncode)
330+
library(dplyr)
331+
## ----code2code----------------------------------------------------------------
332+
library(regioncode)
333+
data("corruption")
334+
# Conversion to the 1989 version
335+
regioncode(data_input = corruption$prefecture_id,
336+
convert_to = "code", # default setting
337+
year_from = 2019,
338+
year_to = 1989)
339+
# Comparison
340+
tibble(
341+
code2019 = corruption$prefecture_id,
342+
code1989 = regioncode(data_input = corruption$prefecture_id,
343+
convert_to = "code", # default setting
344+
year_from = 2019,
345+
year_to = 1989),
346+
name2019 = regioncode(data_input = corruption$prefecture_id,
347+
convert_to = "name", # default setting
348+
year_from = 2019,
349+
year_to = 2019),
350+
name1989 = regioncode(data_input = corruption$prefecture_id,
351+
convert_to = "name", # default setting
352+
year_from = 2019,
353+
year_to = 1989)
354+
)
355+
## ----setup, include=FALSE-----------------------------------------------------
356+
knitr::opts_chunk$set(message = FALSE, warning = FALSE)
357+
if(!require(regioncode)) install.packages("regioncode")
358+
library(regioncode)
359+
library(dplyr)
360+
## ----code2code----------------------------------------------------------------
361+
library(regioncode)
362+
data("corruption")
363+
# Conversion to the 1989 version
364+
regioncode(data_input = corruption$prefecture_id,
365+
convert_to = "code", # default setting
366+
year_from = 2019,
367+
year_to = 1989)
368+
# Comparison
369+
tibble(
370+
code2019 = corruption$prefecture_id,
371+
code1989 = regioncode(data_input = corruption$prefecture_id,
372+
convert_to = "code", # default setting
373+
year_from = 2019,
374+
year_to = 1989),
375+
name2019 = regioncode(data_input = corruption$prefecture_id,
376+
convert_to = "name", # default setting
377+
year_from = 2019,
378+
year_to = 2019),
379+
name1989 = regioncode(data_input = corruption$prefecture_id,
380+
convert_to = "name", # default setting
381+
year_from = 2019,
382+
year_to = 1989)
383+
)
384+
## ----code2name----------------------------------------------------------------
385+
# Original name
386+
tibble(
387+
id = corruption$prefecture_id,
388+
name = corruption$prefecture
389+
)
390+
# Codes to name
391+
regioncode(data_input = corruption$prefecture_id,
392+
convert_to = "name",
393+
year_from = 2019,
394+
year_to = 1989)
395+
# Name to codes of the same year
396+
regioncode(data_input = corruption$prefecture,
397+
convert_to = "code",
398+
year_from = 2019,
399+
year_to = 2019)
400+
# Name to name of a different year
401+
regioncode(data_input = corruption$prefecture,
402+
convert_to = "name",
403+
year_from = 2019,
404+
year_to = 1989)
405+
## ----incomplete_name----------------------------------------------------------
406+
# Original full names
407+
corruption$prefecture
408+
fake_incomplete <- corruption$prefecture
409+
index_incomplete <- sample(seq(length(corruption$prefecture)), 7)
410+
fake_incomplete[index_incomplete] <- fake_incomplete[index_incomplete] |>
411+
substr(start = 1, stop = 2)
412+
fake_incomplete
413+
# Conversion to full names in 2008
414+
regioncode(data_input = fake_incomplete,
415+
convert_to = "name",
416+
year_from = 2019,
417+
year_to = 2008,
418+
incomplete_name = TRUE)
419+
## ----municipality-------------------------------------------------------------
420+
names_municipality <- c("北京市", # Beijing, a municipality
421+
"海淀区", # A district of Beijing
422+
"上海市", # Shanghai, a municipality
423+
"静安区", # A district of Shanghai
424+
"济南市") # A prefecture of Shandong
425+
# When `zhixiashi` is FALSE, only the districts are recognized
426+
regioncode(data_input = names_municipality,
427+
year_from = 2019,
428+
year_to = 2019,
429+
convert_to = "code",
430+
zhixiashi = FALSE)
431+
# When `zhixiashi` is TRUE, municipalities are recognized
432+
regioncode(data_input = names_municipality,
433+
year_from = 2019,
434+
year_to = 2019,
435+
convert_to = "code",
436+
zhixiashi = TRUE)
437+
## ----rank---------------------------------------------------------------------
438+
tibble(
439+
city = corruption$prefecture,
440+
rank1989 = regioncode(data_input = corruption$prefecture,
441+
year_from = 2019,
442+
year_to = 1989,
443+
convert_to="rank"),
444+
rank2014 = regioncode(data_input = corruption$prefecture,
445+
year_from = 2019,
446+
year_to = 2014,
447+
convert_to = "rank")
448+
)
449+
## ----pinyin-------------------------------------------------------------------
450+
tibble(
451+
city = corruption$prefecture,
452+
cityPY = regioncode(data_input = corruption$prefecture,
453+
year_from = 2019,
454+
year_to = 1989,
455+
convert_to = "name",
456+
to_pinyin = TRUE
457+
),
458+
areaPY = regioncode(data_input = corruption$prefecture,
459+
year_from = 2019,
460+
year_to = 1989,
461+
convert_to = "area",
462+
to_pinyin = TRUE
463+
)
464+
)
465+
# Regions with special spelling
466+
regioncode(data_input = c("山西", "陕西", "内蒙古", "香港", "澳门"),
467+
year_from = 2019,
468+
year_to = 2008,
469+
convert_to = "name",
470+
incomplete_name = TRUE,
471+
province = TRUE,
472+
to_pinyin = TRUE
473+
)
474+
## ----provinces----------------------------------------------------------------
475+
tibble(
476+
province = corruption$province_id,
477+
prov_name = regioncode(data_input = corruption$province_id,
478+
convert_to = "name",
479+
year_from = 2019,
480+
year_to = 1989,
481+
province = TRUE),
482+
prov_abbre = regioncode(data_input = corruption$province_id,
483+
convert_to = "codeToabbre",
484+
year_from = 2019,
485+
year_to = 1989,
486+
province = TRUE)
487+
)
488+
## ----2area--------------------------------------------------------------------
489+
regioncode(data_input = corruption$prefecture,
490+
year_from = 2019,
491+
year_to = 1989,
492+
convert_to = "area")
493+
## ----language_zone------------------------------------------------------------
494+
tibble(
495+
city = corruption$prefecture,
496+
dialectGroup = regioncode(data_input = corruption$prefecture,
497+
year_from = 2019,
498+
year_to = 1989,
499+
to_dialect = "dia_group"),
500+
dialectSubGroup = regioncode(data_input = corruption$prefecture,
501+
year_from = 2019,
502+
year_to = 1989,
503+
to_dialect = "dia_sub_group")
504+
)
505+
load("~/Develop/regioncode/R/sysdata.rda")
506+
load("~/Develop/regioncode/data/corruption.rda")
507+
#| label: installConfirm
508+
R.Version()
509+
#| label: installConfirm
510+
R.Version()
511+
letters
512+
1:50

.Rproj.user/shared/notebooks/paths

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,11 @@
1-
/Users/xinyiye/Documents/GitHub/regioncode/R/regioncode.R="DC074D86"
2-
/Users/xinyiye/Documents/GitHub/regioncode/dev/citylevel2021.R="2E3C9D10"
3-
/Users/xinyiye/Documents/GitHub/regioncode/dev/cityranking.R="A45A71BD"
4-
/Users/xinyiye/Documents/博一下/空间分析/Lec2_visulizing_spatial_data/Lec2_visulizing_spatial_data.R="9BEF4761"
1+
/Users/qiuqian/Develop/drhur_textbook/_quarto.yml="2206F0A0"
2+
/Users/qiuqian/Develop/drhur_textbook/b_drhur.bib="EE001743"
3+
/Users/qiuqian/Develop/drhur_textbook/history.qmd="1E802CAD"
4+
/Users/qiuqian/Develop/drhur_textbook/index.qmd="F36D8065"
5+
/Users/qiuqian/Develop/regioncode/.github/workflows/draft-pdf.yml="93529F8D"
6+
/Users/qiuqian/Develop/regioncode/DESCRIPTION="3F67DB9B"
7+
/Users/qiuqian/Develop/regioncode/NEWS.md="721E00DD"
8+
/Users/qiuqian/Develop/regioncode/R/globals.R="1B8096D6"
9+
/Users/qiuqian/Develop/regioncode/R/regioncode.R="5BBEBD57"
10+
/Users/qiuqian/Develop/regioncode/vignettes/regioncode-vignette.R="3372B0E9"
11+
/Users/qiuqian/Develop/regioncode/vignettes/regioncode-vignette.html="5A075A28"

0 commit comments

Comments
 (0)