Skip to content

Commit 0096b8d

Browse files
authored
Merge pull request #20 from rfd1/main
Typo and installation instructions
2 parents edf1087 + 8b11bd2 commit 0096b8d

File tree

3 files changed

+17
-4
lines changed

3 files changed

+17
-4
lines changed

README.md

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,19 @@ Several (non-local) operators are implemented in {py:mod}`fenicsx_ii`:
2626

2727
Any other operator can be implemented by following the {py:class}`ReductionOperator<fenicsx_ii.ReductionOperator>`-protocol.
2828

29+
## Installation
30+
31+
Users are encouraged to install `fenicsx_ii` with `pip` in an environment where `dolfinx` is already installed.
32+
33+
### `pip`
34+
To install the package with `pip` run
35+
36+
```bash
37+
python3 -m pip install fenicsx_ii --no-build-isolation
38+
```
39+
40+
Note that you should pass the flag `--no-build-isolation` to `pip` to avoid issues with the build environment, such as incompatible versions of `nanobind`.
41+
2942
## Funding
3043

3144
The development of FEniCSx_ii has been funded by the Wellcome Trust,

demos/coupled_domains.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
# The following example shows how to couple two non-overlapping meshes using FEniCSx_ii.
77

88
# This example will consider two domains, $\Omega_0=[0,1]\times[0,1]$ and
9-
# $\Omega_1=[4, 3]\times[5,3]$.
9+
# $\Omega_1=[4, 3]\times[5,4]$.
1010
# We will compute the following integral
1111
#
1212
# $$
@@ -15,7 +15,7 @@
1515
# \end{align}
1616
# $$
1717
#
18-
# where $\mathbf{x_1}\in \Omega_1$, and $T(\mathbf{x_1}): \Omega_1\mapsto \Omega_0$
18+
# where $\mathbf{x_1}\in \Omega_1$, and $T: \Omega_1\mapsto \Omega_0$
1919
# through a translation.
2020
#
2121
# First we start by importing the necessary modules:

demos/coupled_poisson_solver.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -109,14 +109,14 @@
109109
# \end{align}
110110
# $$
111111
#
112-
# with the variational formulation
112+
# where $\xi > 0$ is the permeability constant, with the variational formulation
113113
#
114114
# $$
115115
# \begin{align*}
116116
# \int_\Omega \alpha_1 \nabla u \cdot \nabla v~\mathrm{d}x
117117
# + \int_\Gamma P\xi (\Pi_R(u) - p)\Pi_R(v)~\mathrm{d}s
118118
# &= \int_\Omega f\cdot v~\mathrm{d}x\\
119-
# \int_\Gamma d_s p \cdot d_s q~\mathrm{d}s
119+
# \int_\Gamma A d_s p \cdot d_s q~\mathrm{d}s
120120
# + \int_\Gamma P\xi (p - \Pi_R(u))q~\mathrm{d}s
121121
# &= \int_\Gamma A\hat f\cdot q~\mathrm{d}s
122122
# \end{align*}

0 commit comments

Comments
 (0)