I run the "Example Usage":
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
device = torch.device("cuda")
tokenizer = GPT2Tokenizer.from_pretrained("stanford-crfm/BioMedLM")
model = GPT2LMHeadModel.from_pretrained("stanford-crfm/BioMedLM").to(device)
input_ids = tokenizer.encode(
"Photosynthesis is ", return_tensors="pt"
).to(device)
sample_output = model.generate(input_ids, do_sample=True, max_length=50, top_k=50)
print("Output:\n" + 100 * "-")
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))