|
| 1 | +# -*- coding: UTF-8 -*- |
| 2 | +import os |
| 3 | +import torch |
| 4 | +from pysenal import append_jsonlines |
| 5 | +from deep_keyphrase.base_predictor import BasePredictor |
| 6 | +from deep_keyphrase.dataloader import KeyphraseDataLoader, TOKENS, RAW_BATCH |
| 7 | +from deep_keyphrase.utils.constants import BOS_WORD |
| 8 | +from deep_keyphrase.utils.vocab_loader import load_vocab |
| 9 | +from deep_keyphrase.utils.tokenizer import token_char_tokenize |
| 10 | +from .model import CopyTransformer |
| 11 | +from .beam_search import TransformerBeamSearch |
| 12 | + |
| 13 | + |
| 14 | +class CopyTransformerPredictor(BasePredictor): |
| 15 | + def __init__(self, model_info, vocab_info, beam_size, max_target_len, max_src_length): |
| 16 | + super().__init__(model_info) |
| 17 | + if isinstance(vocab_info, str): |
| 18 | + self.vocab2id = load_vocab(vocab_info) |
| 19 | + elif isinstance(vocab_info, dict): |
| 20 | + self.vocab2id = vocab_info |
| 21 | + else: |
| 22 | + raise ValueError('vocab info type error') |
| 23 | + self.id2vocab = dict(zip(self.vocab2id.values(), self.vocab2id.keys())) |
| 24 | + self.config = self.load_config(model_info) |
| 25 | + self.model = self.load_model(model_info, CopyTransformer(self.config, self.vocab2id)) |
| 26 | + self.model.eval() |
| 27 | + self.beam_size = beam_size |
| 28 | + self.max_target_len = max_target_len |
| 29 | + self.max_src_len = max_src_length |
| 30 | + self.beam_searcher = TransformerBeamSearch(model=self.model, |
| 31 | + beam_size=self.beam_size, |
| 32 | + max_target_len=self.max_target_len, |
| 33 | + id2vocab=self.id2vocab, |
| 34 | + bos_idx=self.vocab2id[BOS_WORD], |
| 35 | + args=self.config) |
| 36 | + |
| 37 | + def predict(self, text_list, batch_size, delimiter=None): |
| 38 | + self.model.eval() |
| 39 | + if len(text_list) < batch_size: |
| 40 | + batch_size = len(text_list) |
| 41 | + text_list = [{TOKENS: token_char_tokenize(i)} for i in text_list] |
| 42 | + loader = KeyphraseDataLoader(data_source=text_list, |
| 43 | + vocab2id=self.vocab2id, |
| 44 | + batch_size=batch_size, |
| 45 | + max_oov_count=self.config.max_oov_count, |
| 46 | + max_src_len=self.max_src_len, |
| 47 | + max_target_len=self.max_target_len, |
| 48 | + mode='inference') |
| 49 | + result = [] |
| 50 | + for batch in loader: |
| 51 | + with torch.no_grad(): |
| 52 | + result.extend(self.beam_searcher.beam_search(batch, delimiter=delimiter)) |
| 53 | + return result |
| 54 | + |
| 55 | + def eval_predict(self, src_filename, dest_filename, batch_size, |
| 56 | + model=None, remove_existed=False, |
| 57 | + token_field='tokens', keyphrase_field='keyphrases'): |
| 58 | + loader = KeyphraseDataLoader(data_source=src_filename, |
| 59 | + vocab2id=self.vocab2id, |
| 60 | + batch_size=batch_size, |
| 61 | + max_oov_count=self.config.max_oov_count, |
| 62 | + max_src_len=self.max_src_len, |
| 63 | + max_target_len=self.max_target_len, |
| 64 | + mode='inference', |
| 65 | + pre_fetch=True, |
| 66 | + token_field=token_field, |
| 67 | + keyphrase_field=keyphrase_field) |
| 68 | + if os.path.exists(dest_filename): |
| 69 | + print('destination filename {} existed'.format(dest_filename)) |
| 70 | + if remove_existed: |
| 71 | + os.remove(dest_filename) |
| 72 | + if model is not None: |
| 73 | + model.eval() |
| 74 | + self.beam_searcher = TransformerBeamSearch(model=model, |
| 75 | + beam_size=self.beam_size, |
| 76 | + max_target_len=self.max_target_len, |
| 77 | + id2vocab=self.id2vocab, |
| 78 | + bos_idx=self.vocab2id[BOS_WORD], |
| 79 | + args=self.config) |
| 80 | + |
| 81 | + for batch in loader: |
| 82 | + with torch.no_grad(): |
| 83 | + batch_result = self.beam_searcher.beam_search(batch, delimiter=None) |
| 84 | + final_result = [] |
| 85 | + assert len(batch_result) == len(batch[RAW_BATCH]) |
| 86 | + for item_input, item_output in zip(batch[RAW_BATCH], batch_result): |
| 87 | + item_input['pred_keyphrases'] = item_output |
| 88 | + final_result.append(item_input) |
| 89 | + append_jsonlines(dest_filename, final_result) |
0 commit comments