|
| 1 | +import os |
| 2 | +import pathlib |
| 3 | + |
| 4 | +import dxchange |
| 5 | +import numpy |
| 6 | +from nxtomo import NXtomo |
| 7 | +from nxtomo.nxobject.nxdetector import ImageKey |
| 8 | +from tomoscan.esrf.scan.nxtomoscan import NXtomoScan |
| 9 | + |
| 10 | +THIS_PATH = pathlib.Path(os.path.dirname(os.path.abspath(__file__))) |
| 11 | +DATA_PATH = pathlib.Path(THIS_PATH / "tomo_00077.h5") # from tomobank |
| 12 | + |
| 13 | +# I took most of this from the tomoscan tutorial, but I had to modify it. |
| 14 | +# I am not sure how you are storing your "projections" data. Basically, we want |
| 15 | +# projection images along x and y in a [Z, Y, X] array, like is output by dxchange.read_aps_32id. |
| 16 | +# You can modify your data import method in tomopyui.backend.io to get it into the right format. |
| 17 | +proj, flat, dark, theta = dxchange.read_aps_32id(fname=DATA_PATH, proj=(0, 477)) |
| 18 | + |
| 19 | +binning = 8 |
| 20 | +proj_binned = proj[:, ::binning, ::binning] |
| 21 | +dark_binned = dark[:, ::binning, ::binning] |
| 22 | +flat_binned = flat[:, ::binning, ::binning] |
| 23 | +assert proj_binned.shape[2] == dark_binned.shape[2] == flat_binned.shape[2] |
| 24 | +assert proj_binned.shape[1] == dark_binned.shape[1] == flat_binned.shape[1] |
| 25 | +proj_rotation_angles = theta * 180 / numpy.pi |
| 26 | +assert len(proj_rotation_angles) == len(proj_binned) |
| 27 | + |
| 28 | +my_nxtomo = NXtomo() |
| 29 | + |
| 30 | +# create the array |
| 31 | +data = numpy.concatenate( |
| 32 | + [ |
| 33 | + dark_binned, |
| 34 | + flat_binned, |
| 35 | + proj_binned, |
| 36 | + ] |
| 37 | +) |
| 38 | +assert data.ndim == 3 |
| 39 | +print(data.shape) |
| 40 | +# then register the data to the detector |
| 41 | +my_nxtomo.instrument.detector.data = data |
| 42 | + |
| 43 | +image_key_control = numpy.concatenate( |
| 44 | + [ |
| 45 | + [ImageKey.DARK_FIELD] * len(dark_binned), |
| 46 | + [ImageKey.FLAT_FIELD] * len(flat_binned), |
| 47 | + [ImageKey.PROJECTION] * len(proj_binned), |
| 48 | + ] |
| 49 | +) |
| 50 | + |
| 51 | +# insure with have the same number of frames and image key |
| 52 | +assert len(image_key_control) == len(data) |
| 53 | +# print position of flats in the sequence |
| 54 | +print("flats indexes are", numpy.where(image_key_control == ImageKey.FLAT_FIELD)) |
| 55 | +# then register the image keys to the detector |
| 56 | +my_nxtomo.instrument.detector.image_key_control = image_key_control |
| 57 | + |
| 58 | +rotation_angle = numpy.concatenate( |
| 59 | + [ |
| 60 | + [0 for x in range(len(dark_binned))], |
| 61 | + [0 for x in range(len(flat_binned))], |
| 62 | + proj_rotation_angles, |
| 63 | + ] |
| 64 | +) |
| 65 | +assert len(rotation_angle) == len(data) |
| 66 | +# register rotation angle to the sample |
| 67 | +my_nxtomo.sample.rotation_angle = rotation_angle |
| 68 | + |
| 69 | +my_nxtomo.instrument.detector.field_of_view = "Full" |
| 70 | + |
| 71 | +my_nxtomo.instrument.detector.x_pixel_size = ( |
| 72 | + my_nxtomo.instrument.detector.y_pixel_size |
| 73 | +) = 1e-7 # pixel size must be provided in SI: meter |
| 74 | +my_nxtomo.instrument.detector.x_pixel_size = ( |
| 75 | + my_nxtomo.instrument.detector.y_pixel_size |
| 76 | +) = 0.1 |
| 77 | +my_nxtomo.instrument.detector.x_pixel_size.unit = ( |
| 78 | + my_nxtomo.instrument.detector.y_pixel_size.unit |
| 79 | +) = "micrometer" |
| 80 | + |
| 81 | +nx_tomo_file_path = pathlib.Path(THIS_PATH / "tomo_00077.nx") |
| 82 | +my_nxtomo.save(file_path=str(nx_tomo_file_path), data_path="entry", overwrite=True) |
| 83 | + |
| 84 | +has_tomoscan = False |
| 85 | +try: |
| 86 | + import tomoscan |
| 87 | +except ImportError: |
| 88 | + has_tomoscan = False |
| 89 | + from tomoscan.esrf import NXtomoScan |
| 90 | + from tomoscan.validator import ReconstructionValidator |
| 91 | + |
| 92 | + has_tomoscan = True |
| 93 | + |
| 94 | +if has_tomoscan: |
| 95 | + scan = NXtomoScan(nx_tomo_file_path, entry="entry") |
| 96 | + validator = ReconstructionValidator( |
| 97 | + scan, check_phase_retrieval=False, check_values=True |
| 98 | + ) |
| 99 | + assert validator.is_valid() |
0 commit comments