|
| 1 | +# |
| 2 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 3 | +# Copyright 2023 The vLLM team. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# This file is a part of the vllm-ascend project. |
| 17 | +# |
| 18 | +import os |
| 19 | + |
| 20 | +import pytest |
| 21 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 22 | + |
| 23 | +from tests.e2e.conftest import VllmRunner |
| 24 | + |
| 25 | +os.environ["VLLM_USE_MODELSCOPE"] = "True" |
| 26 | +os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" |
| 27 | + |
| 28 | +MODELS = ["Qwen/Qwen2.5-0.5B-Instruct"] |
| 29 | + |
| 30 | + |
| 31 | +def get_prompt_embeds(chat, tokenizer, embedding_layer): |
| 32 | + """Convert chat messages to prompt embeddings.""" |
| 33 | + token_ids = tokenizer.apply_chat_template(chat, |
| 34 | + add_generation_prompt=True, |
| 35 | + return_tensors='pt') |
| 36 | + prompt_embeds = embedding_layer(token_ids).squeeze(0) |
| 37 | + return prompt_embeds |
| 38 | + |
| 39 | + |
| 40 | +@pytest.mark.parametrize("model_name", MODELS) |
| 41 | +def test_single_prompt_embeds_inference(model_name): |
| 42 | + """Test single prompt inference with prompt embeddings.""" |
| 43 | + # Prepare prompt embeddings |
| 44 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 45 | + transformers_model = AutoModelForCausalLM.from_pretrained(model_name) |
| 46 | + embedding_layer = transformers_model.get_input_embeddings() |
| 47 | + |
| 48 | + chat = [{ |
| 49 | + "role": "user", |
| 50 | + "content": "Please tell me about the capital of France." |
| 51 | + }] |
| 52 | + prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer) |
| 53 | + |
| 54 | + # Run inference with prompt embeddings |
| 55 | + with VllmRunner( |
| 56 | + model_name, |
| 57 | + enable_prompt_embeds=True, |
| 58 | + enforce_eager=True, |
| 59 | + ) as vllm_runner: |
| 60 | + outputs = vllm_runner.model.generate({ |
| 61 | + "prompt_embeds": prompt_embeds, |
| 62 | + }) |
| 63 | + |
| 64 | + # Verify output |
| 65 | + assert len(outputs) == 1 |
| 66 | + assert len(outputs[0].outputs) > 0 |
| 67 | + assert len(outputs[0].outputs[0].text) > 0 |
| 68 | + print(f"\n[Single Inference Output]: {outputs[0].outputs[0].text}") |
| 69 | + |
| 70 | + |
| 71 | +@pytest.mark.parametrize("model_name", MODELS) |
| 72 | +def test_batch_prompt_embeds_inference(model_name): |
| 73 | + """Test batch prompt inference with prompt embeddings.""" |
| 74 | + # Prepare prompt embeddings |
| 75 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 76 | + transformers_model = AutoModelForCausalLM.from_pretrained(model_name) |
| 77 | + embedding_layer = transformers_model.get_input_embeddings() |
| 78 | + |
| 79 | + chats = [[{ |
| 80 | + "role": "user", |
| 81 | + "content": "Please tell me about the capital of France." |
| 82 | + }], |
| 83 | + [{ |
| 84 | + "role": "user", |
| 85 | + "content": "When is the day longest during the year?" |
| 86 | + }], |
| 87 | + [{ |
| 88 | + "role": "user", |
| 89 | + "content": "Where is bigger, the moon or the sun?" |
| 90 | + }]] |
| 91 | + |
| 92 | + prompt_embeds_list = [ |
| 93 | + get_prompt_embeds(chat, tokenizer, embedding_layer) for chat in chats |
| 94 | + ] |
| 95 | + |
| 96 | + # Run batch inference with prompt embeddings |
| 97 | + with VllmRunner( |
| 98 | + model_name, |
| 99 | + enable_prompt_embeds=True, |
| 100 | + enforce_eager=True, |
| 101 | + ) as vllm_runner: |
| 102 | + outputs = vllm_runner.model.generate([{ |
| 103 | + "prompt_embeds": embeds |
| 104 | + } for embeds in prompt_embeds_list]) |
| 105 | + |
| 106 | + # Verify outputs |
| 107 | + assert len(outputs) == len(chats) |
| 108 | + for i, output in enumerate(outputs): |
| 109 | + assert len(output.outputs) > 0 |
| 110 | + assert len(output.outputs[0].text) > 0 |
| 111 | + print(f"\nQ{i+1}: {chats[i][0]['content']}") |
| 112 | + print(f"A{i+1}: {output.outputs[0].text}") |
| 113 | + |
| 114 | + |
| 115 | +@pytest.mark.parametrize("model_name", MODELS) |
| 116 | +def test_prompt_embeds_with_aclgraph(model_name): |
| 117 | + """Test prompt embeddings with ACL graph enabled vs disabled.""" |
| 118 | + # Prepare prompt embeddings |
| 119 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 120 | + transformers_model = AutoModelForCausalLM.from_pretrained(model_name) |
| 121 | + embedding_layer = transformers_model.get_input_embeddings() |
| 122 | + |
| 123 | + chat = [{"role": "user", "content": "What is the capital of China?"}] |
| 124 | + prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer) |
| 125 | + |
| 126 | + # Run with ACL graph enabled (enforce_eager=False) |
| 127 | + with VllmRunner( |
| 128 | + model_name, |
| 129 | + enable_prompt_embeds=True, |
| 130 | + enforce_eager=False, |
| 131 | + ) as vllm_aclgraph_runner: |
| 132 | + aclgraph_outputs = vllm_aclgraph_runner.model.generate({ |
| 133 | + "prompt_embeds": |
| 134 | + prompt_embeds, |
| 135 | + }) |
| 136 | + |
| 137 | + # Run with ACL graph disabled (enforce_eager=True) |
| 138 | + with VllmRunner( |
| 139 | + model_name, |
| 140 | + enable_prompt_embeds=True, |
| 141 | + enforce_eager=True, |
| 142 | + ) as vllm_eager_runner: |
| 143 | + eager_outputs = vllm_eager_runner.model.generate({ |
| 144 | + "prompt_embeds": |
| 145 | + prompt_embeds, |
| 146 | + }) |
| 147 | + |
| 148 | + # Verify both produce valid outputs |
| 149 | + assert len(aclgraph_outputs) == 1 |
| 150 | + assert len(eager_outputs) == 1 |
| 151 | + assert len(aclgraph_outputs[0].outputs[0].text) > 0 |
| 152 | + assert len(eager_outputs[0].outputs[0].text) > 0 |
| 153 | + |
| 154 | + print("\n[ACL Graph Output]:", aclgraph_outputs[0].outputs[0].text) |
| 155 | + print("[Eager Output]:", eager_outputs[0].outputs[0].text) |
| 156 | + |
| 157 | + # Note: Outputs may differ slightly due to different execution paths, |
| 158 | + # but both should be valid responses |
| 159 | + |
| 160 | + |
| 161 | +@pytest.mark.parametrize("model_name", MODELS) |
| 162 | +def test_mixed_prompt_embeds_and_text(model_name): |
| 163 | + """Test mixed inputs with both prompt embeddings and text prompts.""" |
| 164 | + # Prepare prompt embeddings for first request |
| 165 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 166 | + transformers_model = AutoModelForCausalLM.from_pretrained(model_name) |
| 167 | + embedding_layer = transformers_model.get_input_embeddings() |
| 168 | + |
| 169 | + chat = [{"role": "user", "content": "What is AI?"}] |
| 170 | + prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer) |
| 171 | + |
| 172 | + # Prepare text prompt for second request |
| 173 | + text_prompt = "What is machine learning?" |
| 174 | + |
| 175 | + # Run inference with mixed inputs |
| 176 | + with VllmRunner( |
| 177 | + model_name, |
| 178 | + enable_prompt_embeds=True, |
| 179 | + enforce_eager=True, |
| 180 | + ) as vllm_runner: |
| 181 | + # Test prompt embeddings |
| 182 | + embeds_output = vllm_runner.model.generate({ |
| 183 | + "prompt_embeds": |
| 184 | + prompt_embeds, |
| 185 | + }) |
| 186 | + |
| 187 | + # Test text prompt |
| 188 | + text_output = vllm_runner.model.generate(text_prompt) |
| 189 | + |
| 190 | + # Verify both types of inputs work |
| 191 | + assert len(embeds_output) == 1 |
| 192 | + assert len(text_output) == 1 |
| 193 | + assert len(embeds_output[0].outputs[0].text) > 0 |
| 194 | + assert len(text_output[0].outputs[0].text) > 0 |
| 195 | + |
| 196 | + print("\n[Prompt Embeds Output]:", embeds_output[0].outputs[0].text) |
| 197 | + print("[Text Prompt Output]:", text_output[0].outputs[0].text) |
0 commit comments