|
| 1 | +from importlib import reload |
| 2 | + |
| 3 | +import pytest |
| 4 | +import torch |
| 5 | +import vllm |
| 6 | +from pytest_mock import MockerFixture |
| 7 | +from vllm.model_executor.layers.linear import RowParallelLinear |
| 8 | + |
| 9 | +from tests.ut.base import PytestBase |
| 10 | +from vllm_ascend import envs |
| 11 | +from vllm_ascend.patch.worker.patch_common import patch_linear |
| 12 | + |
| 13 | + |
| 14 | +class TestAscendRowParallelLinear(PytestBase): |
| 15 | + |
| 16 | + def init_row_parallel_linear(self, mocker: MockerFixture): |
| 17 | + mocker.patch( |
| 18 | + "vllm_ascend.patch.worker.patch_common.patch_linear.AscendRowParallelLinear.__init__", |
| 19 | + return_value=None, |
| 20 | + ) |
| 21 | + mocker.patch("torch.nn.Module.__setattr__") |
| 22 | + mocker.patch("torch.nn.Module.__getattr__") |
| 23 | + mocker.patch("torch.nn.Module.__delattr__") |
| 24 | + return patch_linear.AscendRowParallelLinear( |
| 25 | + input_size=128, |
| 26 | + output_size=256, |
| 27 | + ) |
| 28 | + |
| 29 | + @pytest.mark.parametrize( |
| 30 | + "version, expected", |
| 31 | + [ |
| 32 | + ("1.0.0", 1), |
| 33 | + ("2.1.0", 0), |
| 34 | + ], |
| 35 | + ) |
| 36 | + def test_get_hcomm_info(self, version, expected, mocker: MockerFixture): |
| 37 | + mock_group = mocker.MagicMock() |
| 38 | + backend = mocker.MagicMock() |
| 39 | + backend.get_hccl_comm_name = lambda x: x |
| 40 | + mock_group._get_backend = lambda x: backend |
| 41 | + mock_group.get_hccl_comm_name = lambda x: x |
| 42 | + mocker.patch("torch.distributed.get_rank", return_value=1) |
| 43 | + mocker_func = mocker.patch( |
| 44 | + "torch.distributed.get_global_rank", |
| 45 | + return_value=0, |
| 46 | + ) |
| 47 | + mocker.patch("torch.__version__", new=version) |
| 48 | + hcomm_info = patch_linear.AscendRowParallelLinear.get_hcomm_info( |
| 49 | + mock_group) |
| 50 | + assert hcomm_info == expected |
| 51 | + mocker_func.assert_called_once() |
| 52 | + hcomm_info = patch_linear.AscendRowParallelLinear.get_hcomm_info( |
| 53 | + mock_group) |
| 54 | + mocker_func.assert_not_called() |
| 55 | + assert hcomm_info == expected |
| 56 | + |
| 57 | + @pytest.mark.parametrize( |
| 58 | + "skip_bias_add, return_bias, bias, expected", |
| 59 | + [ |
| 60 | + (True, False, torch.tensor(1.0), torch.tensor(14.0)), |
| 61 | + (False, True, torch.tensor(1.0), (torch.tensor(14.0), None)), |
| 62 | + ( |
| 63 | + True, |
| 64 | + True, |
| 65 | + torch.tensor(1.0), |
| 66 | + (torch.tensor(14.0), torch.tensor(1.0)), |
| 67 | + ), |
| 68 | + ], |
| 69 | + ) |
| 70 | + def test_forward( |
| 71 | + self, |
| 72 | + skip_bias_add, |
| 73 | + return_bias, |
| 74 | + bias, |
| 75 | + expected, |
| 76 | + mocker: MockerFixture, |
| 77 | + ): |
| 78 | + mocker_tp_group = mocker.MagicMock() |
| 79 | + mocker_tp_group.device_group = mocker.MagicMock() |
| 80 | + row_parallel_linear = self.init_row_parallel_linear(mocker) |
| 81 | + row_parallel_linear.__dict__["tp_rank"] = 0 |
| 82 | + row_parallel_linear.__dict__["skip_bias_add"] = skip_bias_add |
| 83 | + row_parallel_linear.__dict__["return_bias"] = return_bias |
| 84 | + row_parallel_linear.__dict__["bias"] = bias |
| 85 | + row_parallel_linear.__dict__["qyuant_method"] = mocker.MagicMock() |
| 86 | + row_parallel_linear.__dict__["calc_input"] = lambda x: x # noqa |
| 87 | + row_parallel_linear.__dict__[ |
| 88 | + "calc_output"] = lambda x: x.matmul( # noqa |
| 89 | + torch.tensor([1.0, 2.0])) |
| 90 | + ret = row_parallel_linear.forward(torch.tensor([10.0, 2.0])) |
| 91 | + if isinstance(ret, tuple): |
| 92 | + assert torch.allclose(ret[0], expected[0]) |
| 93 | + if ret[1] is None: |
| 94 | + assert ret[1] == expected[1] |
| 95 | + else: |
| 96 | + assert torch.allclose(ret[1], expected[1]) |
| 97 | + else: |
| 98 | + assert torch.allclose(ret, expected) |
| 99 | + |
| 100 | + @pytest.mark.parametrize( |
| 101 | + "input_is_parallel, expected", |
| 102 | + [ |
| 103 | + (True, torch.tensor([10.0, 2.0])), |
| 104 | + (False, torch.tensor([10.0])), |
| 105 | + ], |
| 106 | + ) |
| 107 | + def test_calc_input( |
| 108 | + self, |
| 109 | + input_is_parallel, |
| 110 | + expected, |
| 111 | + mocker: MockerFixture, |
| 112 | + ): |
| 113 | + row_parallel_linear = self.init_row_parallel_linear(mocker) |
| 114 | + row_parallel_linear.__dict__["input_is_parallel"] = input_is_parallel |
| 115 | + input_tensor = torch.Tensor([10, 2]) |
| 116 | + mocker.patch( |
| 117 | + "vllm_ascend.patch.worker.patch_common.patch_linear.get_tensor_model_parallel_rank", # noqa |
| 118 | + return_value=0, |
| 119 | + ) |
| 120 | + mocker.patch( |
| 121 | + "vllm_ascend.patch.worker.patch_common.patch_linear.split_tensor_along_last_dim", # noqa |
| 122 | + return_value=[torch.Tensor([10]), |
| 123 | + torch.Tensor([2])], |
| 124 | + ) |
| 125 | + input_parallel = row_parallel_linear.calc_input(input_tensor) |
| 126 | + assert torch.allclose(input_parallel, expected) |
| 127 | + |
| 128 | + @pytest.mark.parametrize( |
| 129 | + "reduce_results, tp_size, is_prefill, expected", |
| 130 | + [ |
| 131 | + (True, 2, True, torch.tensor(56.0)), |
| 132 | + (True, 2, False, torch.tensor(28.0)), |
| 133 | + (True, 1, False, torch.tensor(14.0)), |
| 134 | + (False, 2, False, torch.tensor(14.0)), |
| 135 | + ], |
| 136 | + ) |
| 137 | + def test_calc_output( |
| 138 | + self, |
| 139 | + reduce_results, |
| 140 | + tp_size, |
| 141 | + is_prefill, |
| 142 | + expected, |
| 143 | + mocker: MockerFixture, |
| 144 | + ): |
| 145 | + quant_method = mocker.MagicMock() |
| 146 | + quant_method.apply = lambda self, x, bias=None: x.matmul( # noqa |
| 147 | + torch.tensor([1.0, 2.0])) |
| 148 | + row_parallel_linear = self.init_row_parallel_linear(mocker) |
| 149 | + row_parallel_linear.__dict__["reduce_results"] = reduce_results |
| 150 | + row_parallel_linear.__dict__["tp_size"] = tp_size |
| 151 | + row_parallel_linear.__dict__["is_prefill"] = lambda: is_prefill # noqa |
| 152 | + row_parallel_linear.__dict__["quant_method"] = quant_method |
| 153 | + row_parallel_linear.__dict__["tp_rank"] = 0 |
| 154 | + row_parallel_linear.__dict__["get_hcomm_info"] = lambda x: None # noqa |
| 155 | + |
| 156 | + mocker.patch( |
| 157 | + "vllm_ascend.patch.worker.patch_common.patch_linear.get_tp_group", |
| 158 | + return_value=mocker.MagicMock(device_group=mocker.MagicMock()), |
| 159 | + ) |
| 160 | + mocker.patch( |
| 161 | + "vllm_ascend.patch.worker.patch_common.patch_linear.tensor_model_parallel_all_reduce", |
| 162 | + side_effect=lambda output: output * 2, # noqa |
| 163 | + ), # noqa |
| 164 | + mocker.patch( |
| 165 | + "torch_npu.npu_mm_all_reduce_base", |
| 166 | + side_effect=lambda input_, weight, hccl_info, bias: input_. |
| 167 | + matmul( # noqa |
| 168 | + torch.tensor([4.0, 8.0])), |
| 169 | + ) # noqa |
| 170 | + ret = row_parallel_linear.calc_output(torch.tensor([10.0, 2.0])) |
| 171 | + assert torch.allclose(ret, expected) |
| 172 | + |
| 173 | + def test_enable_allreduce_matmul(self, mocker: MockerFixture): |
| 174 | + mocker.patch.object(envs, |
| 175 | + "VLLM_ASCEND_ENABLE_MATMUL_ALLREDUCE", |
| 176 | + new=True) |
| 177 | + reload(patch_linear) |
| 178 | + assert envs.VLLM_ASCEND_ENABLE_MATMUL_ALLREDUCE |
| 179 | + assert id(vllm.model_executor.layers.linear.RowParallelLinear) == id( |
| 180 | + patch_linear.AscendRowParallelLinear) |
0 commit comments