diff --git a/src/default/Abs.c b/src/default/Abs.c index 75ef7d79..d0cabb4a 100644 --- a/src/default/Abs.c +++ b/src/default/Abs.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Abs_init(struct onnx_node_t * n) { @@ -27,7 +27,9 @@ static void Abs_int8(struct onnx_node_t * n) int8_t * px = (int8_t *)x->datas; int8_t * py = (int8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -38,7 +40,9 @@ static void Abs_int16(struct onnx_node_t * n) int16_t * px = (int16_t *)x->datas; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -49,7 +53,9 @@ static void Abs_int32(struct onnx_node_t * n) int32_t * px = (int32_t *)x->datas; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -60,7 +66,9 @@ static void Abs_int64(struct onnx_node_t * n) int64_t * px = (int64_t *)x->datas; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -71,7 +79,9 @@ static void Abs_uint8(struct onnx_node_t * n) uint8_t * px = (uint8_t *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -82,7 +92,9 @@ static void Abs_uint16(struct onnx_node_t * n) uint16_t * px = (uint16_t *)x->datas; uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -93,7 +105,9 @@ static void Abs_uint32(struct onnx_node_t * n) uint32_t * px = (uint32_t *)x->datas; uint32_t * py = (uint32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -104,7 +118,9 @@ static void Abs_uint64(struct onnx_node_t * n) uint64_t * px = (uint64_t *)x->datas; uint64_t * py = (uint64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? -px[i] : px[i]; } @@ -116,7 +132,9 @@ static void Abs_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(fabsf(v)); @@ -131,7 +149,9 @@ static void Abs_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(fabsf(v)); @@ -145,7 +165,9 @@ static void Abs_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = fabsf(px[i]); } @@ -156,7 +178,9 @@ static void Abs_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = fabs(px[i]); } diff --git a/src/default/Acos.c b/src/default/Acos.c index ed0c2029..a7c20dee 100644 --- a/src/default/Acos.c +++ b/src/default/Acos.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Acos_init(struct onnx_node_t * n) { @@ -28,10 +28,12 @@ static void Acos_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(acosf(v)); + py[i] = float32_to_float16(acos(v)); } } @@ -42,8 +44,10 @@ static void Acos_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = acosf(px[i]); + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) + py[i] = acos(px[i]); } static void Acos_float64(struct onnx_node_t * n) @@ -53,7 +57,9 @@ static void Acos_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + + for(i = 0, l = y->ndata; i < l; i++) py[i] = acos(px[i]); } diff --git a/src/default/Acosh.c b/src/default/Acosh.c index 8e6da781..d5ba708d 100644 --- a/src/default/Acosh.c +++ b/src/default/Acosh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Acosh_init(struct onnx_node_t * n) { @@ -32,7 +32,7 @@ static void Acosh_float16(struct onnx_node_t * n) for(i = 0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(acoshf(v)); + py[i] = float32_to_float16(acosh(v)); } } @@ -45,7 +45,7 @@ static void Acosh_float32(struct onnx_node_t * n) size_t i, l; for(i = 0, l = y->ndata; i < l; i++) - py[i] = acoshf(px[i]); + py[i] = acosh(px[i]); } static void Acosh_float64(struct onnx_node_t * n) diff --git a/src/default/Add.c b/src/default/Add.c index cc2d02d8..690ded5c 100644 --- a/src/default/Add.c +++ b/src/default/Add.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Add_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Add_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Add_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Add_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Add_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Add_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Add_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Add_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Add_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Add_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Add_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Add_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Add_13_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i, l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/And.c b/src/default/And.c index 69053aa9..000ad897 100644 --- a/src/default/And.c +++ b/src/default/And.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int And_7_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void And_7_bool(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/ArgMax.c b/src/default/ArgMax.c index cb49f182..ccffb2d9 100644 --- a/src/default/ArgMax.c +++ b/src/default/ArgMax.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int axis; diff --git a/src/default/ArgMin.c b/src/default/ArgMin.c index a75c81bf..b749384c 100644 --- a/src/default/ArgMin.c +++ b/src/default/ArgMin.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int axis; diff --git a/src/default/Asin.c b/src/default/Asin.c index 53bfecd2..a1999ff1 100644 --- a/src/default/Asin.c +++ b/src/default/Asin.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Asin_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Asin_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(asinf(v)); + py[i] = float32_to_float16(asin(v)); } } @@ -42,8 +43,9 @@ static void Asin_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = asinf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = asin(px[i]); } static void Asin_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Asin_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = asin(px[i]); } diff --git a/src/default/Asinh.c b/src/default/Asinh.c index a8b1f8a3..5980c5d4 100644 --- a/src/default/Asinh.c +++ b/src/default/Asinh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Asinh_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Asinh_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(asinhf(v)); + py[i] = float32_to_float16(asinh(v)); } } @@ -42,8 +43,9 @@ static void Asinh_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = asinhf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = asinh(px[i]); } static void Asinh_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Asinh_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = asinh(px[i]); } diff --git a/src/default/Atan.c b/src/default/Atan.c index 11964472..1d88c7c2 100644 --- a/src/default/Atan.c +++ b/src/default/Atan.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Atan_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Atan_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(atanf(v)); @@ -42,7 +43,8 @@ static void Atan_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = atanf(px[i]); } @@ -53,7 +55,8 @@ static void Atan_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = atan(px[i]); } diff --git a/src/default/Atanh.c b/src/default/Atanh.c index 1faf439a..828da7d4 100644 --- a/src/default/Atanh.c +++ b/src/default/Atanh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Atanh_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Atanh_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(atanhf(v)); + py[i] = float32_to_float16(atanh(v)); } } @@ -42,8 +43,9 @@ static void Atanh_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = atanhf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = atanh(px[i]); } static void Atanh_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Atanh_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = atanh(px[i]); } diff --git a/src/default/AveragePool.c b/src/default/AveragePool.c index cb0c4bdc..3eaf4f99 100644 --- a/src/default/AveragePool.c +++ b/src/default/AveragePool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" enum auto_pad_t { AUTO_PAD_NOTSET = 0, diff --git a/src/default/BatchNormalization.c b/src/default/BatchNormalization.c index 1e8f51ff..33c5133a 100644 --- a/src/default/BatchNormalization.c +++ b/src/default/BatchNormalization.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float epsilon; diff --git a/src/default/BitShift.c b/src/default/BitShift.c index 3d3070d9..014a3c6c 100644 --- a/src/default/BitShift.c +++ b/src/default/BitShift.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int isleft; @@ -51,7 +51,8 @@ static void BitShift_uint8(struct onnx_node_t * n) if(pdat->isleft) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -60,7 +61,8 @@ static void BitShift_uint8(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +83,8 @@ static void BitShift_uint16(struct onnx_node_t * n) if(pdat->isleft) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -90,7 +93,8 @@ static void BitShift_uint16(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -111,7 +115,8 @@ static void BitShift_uint32(struct onnx_node_t * n) if(pdat->isleft) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -120,7 +125,8 @@ static void BitShift_uint32(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -141,7 +147,8 @@ static void BitShift_uint64(struct onnx_node_t * n) if(pdat->isleft) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -150,7 +157,8 @@ static void BitShift_uint64(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Cast.c b/src/default/Cast.c index b65dc09e..cabf6cf2 100644 --- a/src/default/Cast.c +++ b/src/default/Cast.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t to; diff --git a/src/default/Ceil.c b/src/default/Ceil.c index 7ded60bd..8628190b 100644 --- a/src/default/Ceil.c +++ b/src/default/Ceil.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Ceil_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Ceil_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_float16(ceilf(v)); @@ -43,7 +44,8 @@ static void Ceil_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(ceilf(v)); @@ -57,7 +59,8 @@ static void Ceil_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = ceilf(px[i]); } @@ -68,7 +71,8 @@ static void Ceil_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = ceil(px[i]); } diff --git a/src/default/Celu.c b/src/default/Celu.c index 251006fd..a48e5e5f 100644 --- a/src/default/Celu.c +++ b/src/default/Celu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -46,8 +46,9 @@ static void Celu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = max((float)0.0, (float)px[i]) + min((float)0.0, (float)pdat->alpha * (expf(px[i] / pdat->alpha) - 1)); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = max((float)0.0, (float)px[i]) + min((float)0.0, (float)pdat->alpha * (exp(px[i] / pdat->alpha) - 1)); } void resolver_default_op_Celu(struct onnx_node_t * n) diff --git a/src/default/Clip.c b/src/default/Clip.c index bb17c5c5..2b092d83 100644 --- a/src/default/Clip.c +++ b/src/default/Clip.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" union onnx_scalar_t { uint8_t v_bool; @@ -88,7 +88,8 @@ static void Clip_int8(struct onnx_node_t * n) int8_t minv = pdat->pmin ? pdat->pmin->v_int8 : INT8_MIN; int8_t maxv = pdat->pmax ? pdat->pmax->v_int8 : INT8_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -109,7 +110,8 @@ static void Clip_int16(struct onnx_node_t * n) int16_t minv = pdat->pmin ? pdat->pmin->v_int16 : INT16_MIN; int16_t maxv = pdat->pmax ? pdat->pmax->v_int16 : INT16_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -130,7 +132,8 @@ static void Clip_int32(struct onnx_node_t * n) int32_t minv = pdat->pmin ? pdat->pmin->v_int32 : INT32_MIN; int32_t maxv = pdat->pmax ? pdat->pmax->v_int32 : INT32_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -151,7 +154,8 @@ static void Clip_int64(struct onnx_node_t * n) int64_t minv = pdat->pmin ? pdat->pmin->v_int64 : INT64_MIN; int64_t maxv = pdat->pmax ? pdat->pmax->v_int64 : INT64_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -172,7 +176,8 @@ static void Clip_uint8(struct onnx_node_t * n) uint8_t minv = pdat->pmin ? pdat->pmin->v_uint8 : 0; uint8_t maxv = pdat->pmax ? pdat->pmax->v_uint8 : UINT8_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -193,7 +198,8 @@ static void Clip_uint16(struct onnx_node_t * n) uint16_t minv = pdat->pmin ? pdat->pmin->v_uint16 : 0; uint16_t maxv = pdat->pmax ? pdat->pmax->v_uint16 : UINT16_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -214,7 +220,8 @@ static void Clip_uint32(struct onnx_node_t * n) uint32_t minv = pdat->pmin ? pdat->pmin->v_uint32 : 0; uint32_t maxv = pdat->pmax ? pdat->pmax->v_uint32 : UINT32_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -235,7 +242,8 @@ static void Clip_uint64(struct onnx_node_t * n) uint64_t minv = pdat->pmin ? pdat->pmin->v_uint64 : 0; uint64_t maxv = pdat->pmax ? pdat->pmax->v_uint64 : UINT64_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -257,7 +265,8 @@ static void Clip_bfloat16(struct onnx_node_t * n) float maxv = bfloat16_to_float32(pdat->pmax ? pdat->pmax->v_bfloat16 : float32_to_bfloat16(+FLT_MAX)); float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); if(v < minv) @@ -281,7 +290,8 @@ static void Clip_float16(struct onnx_node_t * n) float maxv = float16_to_float32(pdat->pmax ? pdat->pmax->v_float16 : float32_to_float16(+FLT_MAX)); float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v < minv) @@ -304,7 +314,8 @@ static void Clip_float32(struct onnx_node_t * n) float minv = pdat->pmin ? pdat->pmin->v_float32 : -FLT_MAX; float maxv = pdat->pmax ? pdat->pmax->v_float32 : +FLT_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; @@ -325,7 +336,8 @@ static void Clip_float64(struct onnx_node_t * n) double minv = pdat->pmin ? pdat->pmin->v_float64 : -DBL_MAX; double maxv = pdat->pmax ? pdat->pmax->v_float64 : +DBL_MAX; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < minv) py[i] = minv; diff --git a/src/default/Compress.c b/src/default/Compress.c index 87c7bae6..1083b808 100644 --- a/src/default/Compress.c +++ b/src/default/Compress.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Compress(struct onnx_node_t * n) { diff --git a/src/default/Concat.c b/src/default/Concat.c index 7787256a..894b89cd 100644 --- a/src/default/Concat.c +++ b/src/default/Concat.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int axis; diff --git a/src/default/ConcatFromSequence.c b/src/default/ConcatFromSequence.c index 5fbe77cc..5d2a8471 100644 --- a/src/default/ConcatFromSequence.c +++ b/src/default/ConcatFromSequence.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ConcatFromSequence(struct onnx_node_t * n) { diff --git a/src/default/Constant.c b/src/default/Constant.c index 9efd73e2..6b096190 100644 --- a/src/default/Constant.c +++ b/src/default/Constant.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Constant_init(struct onnx_node_t * n) { @@ -59,7 +59,8 @@ static int Constant_init(struct onnx_node_t * n) if(y->datas && attr->strings) { char ** str = (char **)y->datas; - for(size_t i = 0; i < y->ndata; i++) + size_t i; + for(i=0; i < y->ndata; i++) { if(str[i]) { @@ -67,7 +68,8 @@ static int Constant_init(struct onnx_node_t * n) str[i] = NULL; } } - for(size_t i = 0; i < y->ndata; i++) + + for(i=0; i < y->ndata; i++) { str[i] = malloc(attr->strings[i].len + 1); if(str[i]) diff --git a/src/default/ConstantOfShape.c b/src/default/ConstantOfShape.c index 26fa30a2..52671486 100644 --- a/src/default/ConstantOfShape.c +++ b/src/default/ConstantOfShape.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" union onnx_scalar_t { uint8_t v_bool; diff --git a/src/default/Conv.c b/src/default/Conv.c index f812c878..c929dab4 100644 --- a/src/default/Conv.c +++ b/src/default/Conv.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" enum auto_pad_t { AUTO_PAD_NOTSET = 0, @@ -221,18 +221,19 @@ static inline void dgemm_float32(int n, int m, int o, float * A, float * B, floa typedef float (*btype)[m]; typedef float (*ctype)[m]; - for (int i = 0; i < n; ++i) + int i, j, k; + for (i = 0; i < n; ++i) { - for (int j = 0; j < m; ++j) + for (j = 0; j < m; ++j) { ((ctype)C)[i][j] = 0.; } } - for (int i = 0; i < n; ++i) + for (i = 0; i < n; ++i) { - for (int k = 0; k < o; ++k) + for (k = 0; k < o; ++k) { - for (int j = 0; j < m; ++j) + for (j = 0; j < m; ++j) { ((ctype)C)[i][j] += ((atype)A)[i][k] * ((btype)B)[k][j]; } @@ -247,18 +248,19 @@ static inline void dgemm_float64(int n, int m, int o, double * A, double * B, do typedef double (*btype)[m]; typedef double (*ctype)[m]; - for (int i = 0; i < n; ++i) + int i, j, k; + for (i = 0; i < n; ++i) { - for (int j = 0; j < m; ++j) + for (j = 0; j < m; ++j) { ((ctype)C)[i][j] = 0.; } } - for (int i = 0; i < n; ++i) + for (i = 0; i < n; ++i) { - for (int k = 0; k < o; ++k) + for (k = 0; k < o; ++k) { - for (int j = 0; j < m; ++j) + for (j = 0; j < m; ++j) { ((ctype)C)[i][j] += ((atype)A)[i][k] * ((btype)B)[k][j]; } @@ -299,6 +301,8 @@ static void Conv_float16(struct onnx_node_t * n) } if(ndim == 4) { + size_t i, j, c, g, h, m, w_, n, group_c, w_channel; + int iC = x->dims[1]; int iH = x->dims[2]; int iW = x->dims[3]; @@ -343,31 +347,31 @@ static void Conv_float16(struct onnx_node_t * n) if (conv_mode == CONV_SIMPLE || conv_mode == CONV_CACHED) { - for(int h = 0; h < oH; ++h) + for(h = 0; h < oH; ++h) { - for(int w = 0; w < oW; ++w) + for(w_ = 0; w_ < oW; ++w_) { int base_h = h * pdat->strides[0] - pdat->cpads[0]; - int base_w = w * pdat->strides[1] - pdat->cpads[1]; + int base_w = w_ * pdat->strides[1] - pdat->cpads[1]; if (pxcache) { - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int group_c = 0; group_c < oC * pdat->group / M; ++group_c) + for(group_c = 0; group_c < oC * pdat->group / M; ++group_c) { int base_c = group_c * C; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; ((pxcachetype)pxcache)[n][ch][i][j] = float16_to_float32(((pxtype)px)[n][ch][input_h][input_w]); @@ -378,23 +382,23 @@ static void Conv_float16(struct onnx_node_t * n) } } - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int c = 0; c < oC; ++c) + for(c = 0; c < oC; ++c) { int base_c = (c * pdat->group / M) * C; sum = 0; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; if (pxcache) @@ -412,7 +416,7 @@ static void Conv_float16(struct onnx_node_t * n) } if(pb) sum += float16_to_float32(pb[c]); - ((pytype)py)[n][c][h][w] = float32_to_float16(sum); + ((pytype)py)[n][c][h][w_] = float32_to_float16(sum); } } } @@ -424,45 +428,46 @@ static void Conv_float16(struct onnx_node_t * n) } else if (conv_mode == CONV_IM2COL) { - for (int g = 0; g < pdat->group; g++) + for (g = 0; g < pdat->group; g++) { - for (size_t m = 0; m < MM; m++) + for (m = 0; m < MM; m++) { - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { - ((mwtype)matw)[c * H * W + h * W + w][m] = float16_to_float32(((pwtype)pw)[g * MM + m][c][h][w]); + ((mwtype)matw)[c * H * W + h * W + w_][m] = float16_to_float32(((pwtype)pw)[g * MM + m][c][h][w_]); } } } } - for (int n = 0; n < oN; n++) + size_t hh, ww; + for (n = 0; n < oN; n++) { - for (size_t hh = 0; hh < oH; hh++) + for (hh = 0; hh < oH; hh++) { - for (size_t ww = 0; ww < oW; ww++) + for (ww = 0; ww < oW; ww++) { int base_h = hh * pdat->strides[0] - pdat->cpads[0]; int base_w = ww * pdat->strides[1] - pdat->cpads[1]; - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { int ih = base_h + h * pdat->dilations[0]; - int iw = base_w + w * pdat->dilations[1]; + int iw = base_w + w_ * pdat->dilations[1]; if (ih < 0 || iw < 0 || ih >= iH || iw >= iW) { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = 0.; + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = 0.; } else { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = float16_to_float32(((pxtype)px)[n][g * CC + c][ih][iw]); + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = float16_to_float32(((pxtype)px)[n][g * CC + c][ih][iw]); } } } @@ -470,18 +475,18 @@ static void Conv_float16(struct onnx_node_t * n) } } dgemm_float32(oH * oW, MM, H * W * C, matx, matw, maty); - for (int m = 0; m < MM; ++m) + for (m = 0; m < MM; ++m) { - for (int h = 0; h < oH; ++h) + for (h = 0; h < oH; ++h) { - for (int w = 0; w < oW; ++w) + for (w_ = 0; w_ < oW; ++w_) { - float t = ((mytype)maty)[h * oW + w][m]; + float t = ((mytype)maty)[h * oW + w_][m]; if (pb) { t += float16_to_float32(pb[g * MM + m]); } - ((pytype)py)[n][g * MM + m][h][w] = float32_to_float16(t); + ((pytype)py)[n][g * MM + m][h][w_] = float32_to_float16(t); } } } @@ -629,31 +634,32 @@ static void Conv_float32(struct onnx_node_t * n) if (conv_mode == CONV_SIMPLE || conv_mode == CONV_CACHED) { - for(int h = 0; h < oH; ++h) + size_t i, j, c, h, w_, n, group_c, w_channel; + for(h = 0; h < oH; ++h) { - for(int w = 0; w < oW; ++w) + for(w_ = 0; w_ < oW; ++w_) { int base_h = h * pdat->strides[0] - pdat->cpads[0]; - int base_w = w * pdat->strides[1] - pdat->cpads[1]; + int base_w = w_ * pdat->strides[1] - pdat->cpads[1]; if (pxcache) { - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int group_c = 0; group_c < oC * pdat->group / M; ++group_c) + for(group_c = 0; group_c < oC * pdat->group / M; ++group_c) { int base_c = group_c * C; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; ((pxcachetype)pxcache)[n][ch][i][j] = ((pxtype)px)[n][ch][input_h][input_w]; @@ -664,23 +670,23 @@ static void Conv_float32(struct onnx_node_t * n) } } - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int c = 0; c < oC; ++c) + for(c = 0; c < oC; ++c) { int base_c = (c * pdat->group / M) * C; sum = 0; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; if (pxcache) @@ -698,7 +704,7 @@ static void Conv_float32(struct onnx_node_t * n) } if(pb) sum += pb[c]; - ((pytype)py)[n][c][h][w] = sum; + ((pytype)py)[n][c][h][w_] = sum; } } } @@ -709,46 +715,49 @@ static void Conv_float32(struct onnx_node_t * n) } } else if (conv_mode == CONV_IM2COL) - { - for (int g = 0; g < pdat->group; g++) + { + size_t n, m, c, g, h, w_; + + for (g = 0; g < pdat->group; g++) { - for (size_t m = 0; m < MM; m++) + for (m = 0; m < MM; m++) { - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { - ((mwtype)matw)[c * H * W + h * W + w][m] = ((pwtype)pw)[g * MM + m][c][h][w]; + ((mwtype)matw)[c * H * W + h * W + w_][m] = ((pwtype)pw)[g * MM + m][c][h][w_]; } } } } - for (int n = 0; n < oN; n++) + size_t hh, ww; + for (n = 0; n < oN; n++) { - for (size_t hh = 0; hh < oH; hh++) + for (hh = 0; hh < oH; hh++) { - for (size_t ww = 0; ww < oW; ww++) + for (ww = 0; ww < oW; ww++) { int base_h = hh * pdat->strides[0] - pdat->cpads[0]; int base_w = ww * pdat->strides[1] - pdat->cpads[1]; - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { int ih = base_h + h * pdat->dilations[0]; - int iw = base_w + w * pdat->dilations[1]; + int iw = base_w + w_ * pdat->dilations[1]; if (ih < 0 || iw < 0 || ih >= iH || iw >= iW) { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = 0.; + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = 0.; } else { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = ((pxtype)px)[n][g * CC + c][ih][iw]; + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = ((pxtype)px)[n][g * CC + c][ih][iw]; } } } @@ -756,18 +765,18 @@ static void Conv_float32(struct onnx_node_t * n) } } dgemm_float32(oH * oW, MM, H * W * C, matx, matw, maty); - for (int m = 0; m < MM; ++m) + for (m = 0; m < MM; ++m) { - for (int h = 0; h < oH; ++h) + for (h = 0; h < oH; ++h) { - for (int w = 0; w < oW; ++w) + for (w_ = 0; w_ < oW; ++w_) { - float t = ((mytype)maty)[h * oW + w][m]; + float t = ((mytype)maty)[h * oW + w_][m]; if (pb) { t += pb[g * MM + m]; } - ((pytype)py)[n][g * MM + m][h][w] = t; + ((pytype)py)[n][g * MM + m][h][w_] = t; } } } @@ -915,31 +924,33 @@ static void Conv_float64(struct onnx_node_t * n) if (conv_mode == CONV_SIMPLE || conv_mode == CONV_CACHED) { - for(int h = 0; h < oH; ++h) + size_t i, j, c, h, w_, n, group_c, w_channel; + + for(h = 0; h < oH; ++h) { - for(int w = 0; w < oW; ++w) + for(w_ = 0; w_ < oW; ++w_) { int base_h = h * pdat->strides[0] - pdat->cpads[0]; - int base_w = w * pdat->strides[1] - pdat->cpads[1]; + int base_w = w_ * pdat->strides[1] - pdat->cpads[1]; if (pxcache) { - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int group_c = 0; group_c < oC * pdat->group / M; ++group_c) + for(group_c = 0; group_c < oC * pdat->group / M; ++group_c) { int base_c = group_c * C; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; ((pxcachetype)pxcache)[n][ch][i][j] = ((pxtype)px)[n][ch][input_h][input_w]; @@ -950,23 +961,23 @@ static void Conv_float64(struct onnx_node_t * n) } } - for(int n = 0; n < oN; ++n) + for(n = 0; n < oN; ++n) { - for(int c = 0; c < oC; ++c) + for(c = 0; c < oC; ++c) { int base_c = (c * pdat->group / M) * C; sum = 0; - for(int i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) + for(i = (base_h < 0 ? (-base_h) / pdat->dilations[0] : 0); i < H; ++i) { int input_h = base_h + i * pdat->dilations[0]; if(input_h >= iH) break; - for(int j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) + for(j = (base_w < 0 ? (-base_w) / pdat->dilations[1] : 0); j < W; ++j) { int input_w = base_w + j * pdat->dilations[1]; if(input_w >= iW) break; - for(int w_channel = 0; w_channel < C; ++w_channel) + for(w_channel = 0; w_channel < C; ++w_channel) { ch = base_c + w_channel; if (pxcache) @@ -984,7 +995,7 @@ static void Conv_float64(struct onnx_node_t * n) } if(pb) sum += pb[c]; - ((pytype)py)[n][c][h][w] = sum; + ((pytype)py)[n][c][h][w_] = sum; } } } @@ -996,45 +1007,47 @@ static void Conv_float64(struct onnx_node_t * n) } else if (conv_mode == CONV_IM2COL) { - for (int g = 0; g < pdat->group; g++) + size_t n, m, c, g, h, w_; + for (g = 0; g < pdat->group; g++) { - for (size_t m = 0; m < MM; m++) + for (m = 0; m < MM; m++) { - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { - ((mwtype)matw)[c * H * W + h * W + w][m] = ((pwtype)pw)[g * MM + m][c][h][w]; + ((mwtype)matw)[c * H * W + h * W + w_][m] = ((pwtype)pw)[g * MM + m][c][h][w_]; } } } } - for (int n = 0; n < oN; n++) + size_t hh, ww; + for (n = 0; n < oN; n++) { - for (size_t hh = 0; hh < oH; hh++) + for (hh = 0; hh < oH; hh++) { - for (size_t ww = 0; ww < oW; ww++) + for (ww = 0; ww < oW; ww++) { int base_h = hh * pdat->strides[0] - pdat->cpads[0]; int base_w = ww * pdat->strides[1] - pdat->cpads[1]; - for (size_t c = 0; c < C; c++) + for (c = 0; c < C; c++) { - for (size_t h = 0; h < H; h++) + for (h = 0; h < H; h++) { - for (size_t w = 0; w < W; w++) + for (w_ = 0; w_ < W; w_++) { int ih = base_h + h * pdat->dilations[0]; - int iw = base_w + w * pdat->dilations[1]; + int iw = base_w + w_ * pdat->dilations[1]; if (ih < 0 || iw < 0 || ih >= iH || iw >= iW) { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = 0.; + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = 0.; } else { - ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w] = ((pxtype)px)[n][g * CC + c][ih][iw]; + ((mxtype)matx)[hh * oW + ww][c * H * W + h * W + w_] = ((pxtype)px)[n][g * CC + c][ih][iw]; } } } @@ -1042,18 +1055,18 @@ static void Conv_float64(struct onnx_node_t * n) } } dgemm_float64(oH * oW, MM, H * W * C, matx, matw, maty); - for (int m = 0; m < MM; ++m) + for (m = 0; m < MM; ++m) { - for (int h = 0; h < oH; ++h) + for (h = 0; h < oH; ++h) { - for (int w = 0; w < oW; ++w) + for (w_ = 0; w_ < oW; ++w_) { - float t = ((mytype)maty)[h * oW + w][m]; + float t = ((mytype)maty)[h * oW + w_][m]; if (pb) { t += pb[g * MM + m]; } - ((pytype)py)[n][g * MM + m][h][w] = t; + ((pytype)py)[n][g * MM + m][h][w_] = t; } } } diff --git a/src/default/ConvInteger.c b/src/default/ConvInteger.c index 03bb2a18..147f4843 100644 --- a/src/default/ConvInteger.c +++ b/src/default/ConvInteger.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ConvInteger(struct onnx_node_t * n) { diff --git a/src/default/ConvTranspose.c b/src/default/ConvTranspose.c index e25261be..b270ef97 100644 --- a/src/default/ConvTranspose.c +++ b/src/default/ConvTranspose.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ConvTranspose(struct onnx_node_t * n) { diff --git a/src/default/Cos.c b/src/default/Cos.c index 1ee24a2e..deeef01c 100644 --- a/src/default/Cos.c +++ b/src/default/Cos.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Cos_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Cos_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(cosf(v)); + py[i] = float32_to_float16(cos(v)); } } @@ -42,8 +43,9 @@ static void Cos_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = cosf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = cos(px[i]); } static void Cos_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Cos_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = cos(px[i]); } diff --git a/src/default/Cosh.c b/src/default/Cosh.c index bb874600..a450fdca 100644 --- a/src/default/Cosh.c +++ b/src/default/Cosh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Cosh_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Cosh_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(coshf(v)); + py[i] = float32_to_float16(cosh(v)); } } @@ -42,8 +43,9 @@ static void Cosh_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = coshf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = cosh(px[i]); } static void Cosh_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Cosh_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = cosh(px[i]); } diff --git a/src/default/CumSum.c b/src/default/CumSum.c index f351d9a3..548ca584 100644 --- a/src/default/CumSum.c +++ b/src/default/CumSum.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_CumSum(struct onnx_node_t * n) { diff --git a/src/default/DepthToSpace.c b/src/default/DepthToSpace.c index bc1a1b00..adb437f1 100644 --- a/src/default/DepthToSpace.c +++ b/src/default/DepthToSpace.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_DepthToSpace(struct onnx_node_t * n) { diff --git a/src/default/DequantizeLinear.c b/src/default/DequantizeLinear.c index d7422dd4..68c27c78 100644 --- a/src/default/DequantizeLinear.c +++ b/src/default/DequantizeLinear.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_DequantizeLinear(struct onnx_node_t * n) { diff --git a/src/default/Det.c b/src/default/Det.c index b07d2e74..42b4b7b8 100644 --- a/src/default/Det.c +++ b/src/default/Det.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Det(struct onnx_node_t * n) { diff --git a/src/default/Div.c b/src/default/Div.c index 1158e2dc..b97ae98b 100644 --- a/src/default/Div.c +++ b/src/default/Div.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Div_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Div_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Div_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Div_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Div_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Div_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Div_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Div_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Div_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Div_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Div_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Div_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Div_13_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Dropout.c b/src/default/Dropout.c index 092b87b7..f03125e6 100644 --- a/src/default/Dropout.c +++ b/src/default/Dropout.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Dropout_init(struct onnx_node_t * n) { @@ -27,7 +27,8 @@ static void Dropout_bfloat16(struct onnx_node_t * n) uint16_t * px = (uint16_t *)x->datas; uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i]; } @@ -38,7 +39,8 @@ static void Dropout_float16(struct onnx_node_t * n) uint16_t * px = (uint16_t *)x->datas; uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i]; } @@ -49,7 +51,8 @@ static void Dropout_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i]; } @@ -60,7 +63,8 @@ static void Dropout_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i]; } diff --git a/src/default/DynamicQuantizeLinear.c b/src/default/DynamicQuantizeLinear.c index e3ca8b21..8b358d1d 100644 --- a/src/default/DynamicQuantizeLinear.c +++ b/src/default/DynamicQuantizeLinear.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_DynamicQuantizeLinear(struct onnx_node_t * n) { diff --git a/src/default/Einsum.c b/src/default/Einsum.c index 66139502..53b5d15d 100644 --- a/src/default/Einsum.c +++ b/src/default/Einsum.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Einsum(struct onnx_node_t * n) { diff --git a/src/default/Elu.c b/src/default/Elu.c index 097ce06f..718c3668 100644 --- a/src/default/Elu.c +++ b/src/default/Elu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -47,10 +47,11 @@ static void Elu_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16((px[i] < 0) ? (expf(v) - 1) * pdat->alpha : v); + py[i] = float32_to_float16((px[i] < 0) ? (exp(v) - 1) * pdat->alpha : v); } } @@ -62,8 +63,9 @@ static void Elu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = (px[i] < 0) ? (expf(px[i]) - 1) * pdat->alpha : px[i]; + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = (px[i] < 0) ? (exp(px[i]) - 1) * pdat->alpha : px[i]; } static void Elu_float64(struct onnx_node_t * n) @@ -74,7 +76,8 @@ static void Elu_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? (exp(px[i]) - 1) * pdat->alpha : px[i]; } diff --git a/src/default/Equal.c b/src/default/Equal.c index d07d8741..0e884290 100644 --- a/src/default/Equal.c +++ b/src/default/Equal.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Equal_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Equal_bool(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Equal_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Equal_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Equal_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Equal_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Equal_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Equal_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Equal_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Equal_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Equal_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Equal_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Equal_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -234,7 +246,8 @@ static void Equal_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Erf.c b/src/default/Erf.c index a57239ae..f7747e79 100644 --- a/src/default/Erf.c +++ b/src/default/Erf.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Erf_init(struct onnx_node_t * n) { @@ -124,7 +124,8 @@ static void Erf_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(erff(v)); @@ -139,7 +140,8 @@ static void Erf_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(erff(v)); @@ -153,7 +155,8 @@ static void Erf_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = erff(px[i]); } @@ -164,7 +167,8 @@ static void Erf_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = erf(px[i]); } diff --git a/src/default/Exp.c b/src/default/Exp.c index 8a343919..54691011 100644 --- a/src/default/Exp.c +++ b/src/default/Exp.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Exp_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Exp_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); - py[i] = float32_to_bfloat16(expf(v)); + py[i] = float32_to_bfloat16(exp(v)); } } @@ -43,10 +44,11 @@ static void Exp_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(expf(v)); + py[i] = float32_to_float16(exp(v)); } } @@ -57,8 +59,9 @@ static void Exp_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = expf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = exp(px[i]); } static void Exp_float64(struct onnx_node_t * n) @@ -68,7 +71,8 @@ static void Exp_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = exp(px[i]); } diff --git a/src/default/Expand.c b/src/default/Expand.c index 548267df..d4ce470e 100644 --- a/src/default/Expand.c +++ b/src/default/Expand.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Expand_init(struct onnx_node_t * n) { @@ -50,7 +50,8 @@ static void Expand_bool(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; uint8_t * px = (uint8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -64,7 +65,8 @@ static void Expand_int8(struct onnx_node_t * n) int8_t * py = (int8_t *)y->datas; int8_t * px = (int8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -78,7 +80,8 @@ static void Expand_int16(struct onnx_node_t * n) int16_t * py = (int16_t *)y->datas; int16_t * px = (int16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -92,7 +95,8 @@ static void Expand_int32(struct onnx_node_t * n) int32_t * py = (int32_t *)y->datas; int32_t * px = (int32_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -106,7 +110,8 @@ static void Expand_int64(struct onnx_node_t * n) int64_t * py = (int64_t *)y->datas; int64_t * px = (int64_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -120,7 +125,8 @@ static void Expand_uint8(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; uint8_t * px = (uint8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -134,7 +140,8 @@ static void Expand_uint16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -148,7 +155,8 @@ static void Expand_uint32(struct onnx_node_t * n) uint32_t * py = (uint32_t *)y->datas; uint32_t * px = (uint32_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -162,7 +170,8 @@ static void Expand_uint64(struct onnx_node_t * n) uint64_t * py = (uint64_t *)y->datas; uint64_t * px = (uint64_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -176,7 +185,8 @@ static void Expand_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -190,7 +200,8 @@ static void Expand_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -204,7 +215,8 @@ static void Expand_float32(struct onnx_node_t * n) float * py = (float *)y->datas; float * px = (float *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -218,7 +230,8 @@ static void Expand_float64(struct onnx_node_t * n) double * py = (double *)y->datas; double * px = (double *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -232,7 +245,8 @@ static void Expand_complex64(struct onnx_node_t * n) float * py = (float *)y->datas; float * px = (float *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i * 2] = px[0]; @@ -247,7 +261,8 @@ static void Expand_complex128(struct onnx_node_t * n) double * py = (double *)y->datas; double * px = (double *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i * 2] = px[0]; @@ -262,7 +277,8 @@ static void Expand_string(struct onnx_node_t * n) char ** px = (char **)x->datas; char ** py = (char **)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); if(py[i]) diff --git a/src/default/EyeLike.c b/src/default/EyeLike.c index af58e62a..abec043f 100644 --- a/src/default/EyeLike.c +++ b/src/default/EyeLike.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_EyeLike(struct onnx_node_t * n) { diff --git a/src/default/Flatten.c b/src/default/Flatten.c index aeb0c1de..0825ac5e 100644 --- a/src/default/Flatten.c +++ b/src/default/Flatten.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int axis; @@ -67,7 +67,8 @@ static void Flatten_operator(struct onnx_node_t * n) if(x->type == ONNX_TENSOR_TYPE_STRING) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(py[i]) free(py[i]); diff --git a/src/default/Floor.c b/src/default/Floor.c index 3cb71967..6b39f88e 100644 --- a/src/default/Floor.c +++ b/src/default/Floor.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Floor_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Floor_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(floorf(v)); @@ -43,7 +44,8 @@ static void Floor_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(floorf(v)); @@ -57,7 +59,8 @@ static void Floor_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = floorf(px[i]); } @@ -68,7 +71,8 @@ static void Floor_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = floor(px[i]); } diff --git a/src/default/GRU.c b/src/default/GRU.c index a4a2157f..0ed2f7b1 100644 --- a/src/default/GRU.c +++ b/src/default/GRU.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_GRU(struct onnx_node_t * n) { diff --git a/src/default/Gather.c b/src/default/Gather.c index ba29ec70..f452d421 100644 --- a/src/default/Gather.c +++ b/src/default/Gather.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Gather(struct onnx_node_t * n) { diff --git a/src/default/GatherElements.c b/src/default/GatherElements.c index 2f75865b..800aa681 100644 --- a/src/default/GatherElements.c +++ b/src/default/GatherElements.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_GatherElements(struct onnx_node_t * n) { diff --git a/src/default/GatherND.c b/src/default/GatherND.c index f4a50bfe..60ce9fd2 100644 --- a/src/default/GatherND.c +++ b/src/default/GatherND.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_GatherND(struct onnx_node_t * n) { diff --git a/src/default/Gemm.c b/src/default/Gemm.c index 0658cf23..c1eb65c0 100644 --- a/src/default/Gemm.c +++ b/src/default/Gemm.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; diff --git a/src/default/GlobalAveragePool.c b/src/default/GlobalAveragePool.c index aefad4fc..9b090808 100644 --- a/src/default/GlobalAveragePool.c +++ b/src/default/GlobalAveragePool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int GlobalAveragePool_init(struct onnx_node_t * n) { diff --git a/src/default/GlobalLpPool.c b/src/default/GlobalLpPool.c index 6c3e8275..4ecdbc91 100644 --- a/src/default/GlobalLpPool.c +++ b/src/default/GlobalLpPool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float p; @@ -70,8 +70,8 @@ static void GlobalLpPool_float16(struct onnx_node_t * n) { o = i * C + j; for(k = 0, v = float16_to_float32(0); k < m; ++k) - v += powf(fabsf(float16_to_float32(px[o * m + k])), pdat->p); - py[o] = float32_to_float16(powf(v, 1.0 / pdat->p)); + v += pow(fabsf(float16_to_float32(px[o * m + k])), pdat->p); + py[o] = float32_to_float16(pow(v, 1.0 / pdat->p)); } } } @@ -94,8 +94,8 @@ static void GlobalLpPool_float32(struct onnx_node_t * n) { o = i * C + j; for(k = 0, py[o] = 0; k < m; ++k) - py[o] += powf(fabsf(px[o * m + k]), pdat->p); - py[o] = powf(py[o], 1.0 / pdat->p); + py[o] += pow(fabsf(px[o * m + k]), pdat->p); + py[o] = pow(py[o], 1.0 / pdat->p); } } } diff --git a/src/default/GlobalMaxPool.c b/src/default/GlobalMaxPool.c index 09921b29..590ce00f 100644 --- a/src/default/GlobalMaxPool.c +++ b/src/default/GlobalMaxPool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int GlobalMaxPool_init(struct onnx_node_t * n) { diff --git a/src/default/Greater.c b/src/default/Greater.c index a217a684..799caddd 100644 --- a/src/default/Greater.c +++ b/src/default/Greater.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Greater_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Greater_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Greater_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Greater_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Greater_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Greater_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Greater_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Greater_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Greater_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Greater_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Greater_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Greater_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Greater_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/GreaterOrEqual.c b/src/default/GreaterOrEqual.c index 0e9882ea..899d110f 100644 --- a/src/default/GreaterOrEqual.c +++ b/src/default/GreaterOrEqual.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int GreaterOrEqual_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void GreaterOrEqual_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void GreaterOrEqual_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void GreaterOrEqual_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void GreaterOrEqual_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void GreaterOrEqual_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void GreaterOrEqual_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void GreaterOrEqual_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void GreaterOrEqual_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void GreaterOrEqual_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void GreaterOrEqual_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void GreaterOrEqual_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/HardSigmoid.c b/src/default/HardSigmoid.c index 4b04fbc0..68f2c685 100644 --- a/src/default/HardSigmoid.c +++ b/src/default/HardSigmoid.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -49,7 +49,8 @@ static void HardSigmoid_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(max((float)0.0, min((float)1.0, (float)(pdat->alpha * v + pdat->beta)))); @@ -64,7 +65,8 @@ static void HardSigmoid_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = max((float)0.0, min((float)1.0, (float)(pdat->alpha * px[i] + pdat->beta))); } @@ -76,7 +78,8 @@ static void HardSigmoid_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = max((double)0.0, min((double)1.0, (double)(pdat->alpha * px[i] + pdat->beta))); } diff --git a/src/default/HardSwish.c b/src/default/HardSwish.c index bda951bf..40518ee9 100644 --- a/src/default/HardSwish.c +++ b/src/default/HardSwish.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_HardSwish(struct onnx_node_t * n) { diff --git a/src/default/Hardmax.c b/src/default/Hardmax.c index da5a74ed..30b3edb8 100644 --- a/src/default/Hardmax.c +++ b/src/default/Hardmax.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Hardmax(struct onnx_node_t * n) { diff --git a/src/default/Identity.c b/src/default/Identity.c index 7288619b..c5111ccb 100644 --- a/src/default/Identity.c +++ b/src/default/Identity.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Identity_init(struct onnx_node_t * n) { @@ -29,7 +29,8 @@ static void Identity_operator(struct onnx_node_t * n) if(x->type == ONNX_TENSOR_TYPE_STRING) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(py[i]) free(py[i]); diff --git a/src/default/If.c b/src/default/If.c index 454a33a5..321962e8 100644 --- a/src/default/If.c +++ b/src/default/If.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { struct onnx_graph_t * else_branch; @@ -89,6 +89,8 @@ static void If_operator(struct onnx_node_t * n) struct onnx_node_t * t; int i; + size_t o; + if(px[0]) g = pdat->then_branch; else @@ -110,7 +112,7 @@ static void If_operator(struct onnx_node_t * n) { char ** pa = (char **)a->datas; char ** pb = (char **)b->datas; - for(size_t o = 0; o < b->ndata; o++) + for(o = 0; o < b->ndata; o++) { if(pb[o]) free(pb[o]); diff --git a/src/default/InstanceNormalization.c b/src/default/InstanceNormalization.c index b41a7c1a..81eda697 100644 --- a/src/default/InstanceNormalization.c +++ b/src/default/InstanceNormalization.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float epsilon; @@ -107,7 +107,7 @@ static void InstanceNormalization_float32(struct onnx_node_t * n) mean = temp / channel; temp = 0; for(i = o; i < l; i++) - temp += pow(px[i] - mean, 2); + temp += (px[i] - mean)*(px[i] - mean); var = temp / channel; for(i = o; i < l; i++) py[i] = pscale[jc] * ((px[i] - mean) / sqrtf(var + pdat->epsilon)) + pb[jc]; @@ -145,7 +145,7 @@ static void InstanceNormalization_float64(struct onnx_node_t * n) mean = temp / channel; temp = 0; for(i = o; i < l; i++) - temp += pow(px[i] - mean, 2); + temp += (px[i] - mean)*(px[i] - mean); var = temp / channel; for(i = o; i < l; i++) py[i] = pscale[jc] * ((px[i] - mean) / sqrt(var + pdat->epsilon)) + pb[jc]; diff --git a/src/default/IsInf.c b/src/default/IsInf.c index 92070859..393e5898 100644 --- a/src/default/IsInf.c +++ b/src/default/IsInf.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int detect_negative; @@ -48,7 +48,8 @@ static void IsInf_float32(struct onnx_node_t * n) float * px = (float *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(isinf(px[i])) { @@ -72,7 +73,8 @@ static void IsInf_float64(struct onnx_node_t * n) double * px = (double *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(isinf(px[i])) { diff --git a/src/default/IsNaN.c b/src/default/IsNaN.c index 81ce0b7b..853459d0 100644 --- a/src/default/IsNaN.c +++ b/src/default/IsNaN.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int IsNaN_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void IsNaN_bfloat16(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = isnan(v) ? 1 : 0; @@ -43,7 +44,8 @@ static void IsNaN_float16(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = isnan(v) ? 1 : 0; @@ -57,7 +59,8 @@ static void IsNaN_float32(struct onnx_node_t * n) float * px = (float *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = isnan(px[i]) ? 1 : 0; } @@ -68,7 +71,8 @@ static void IsNaN_float64(struct onnx_node_t * n) double * px = (double *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = isnan(px[i]) ? 1 : 0; } diff --git a/src/default/LRN.c b/src/default/LRN.c index 781164b6..88a7d5b5 100644 --- a/src/default/LRN.c +++ b/src/default/LRN.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -77,7 +77,7 @@ static void LRN_bfloat16(struct onnx_node_t * n) sum += t * t; } o = (u * C + v) * L + i; - py[o] = float32_to_bfloat16(bfloat16_to_float32(px[o]) * powf(pdat->bias + over * sum, -pdat->beta)); + py[o] = float32_to_bfloat16(bfloat16_to_float32(px[o]) * pow(pdat->bias + over * sum, -pdat->beta)); } } } @@ -116,7 +116,7 @@ static void LRN_float16(struct onnx_node_t * n) sum += t * t; } o = (u * C + v) * L + i; - py[o] = float32_to_float16(float16_to_float32(px[o]) * powf(pdat->bias + over * sum, -pdat->beta)); + py[o] = float32_to_float16(float16_to_float32(px[o]) * pow(pdat->bias + over * sum, -pdat->beta)); } } } @@ -155,7 +155,7 @@ static void LRN_float32(struct onnx_node_t * n) sum += t * t; } o = (u * C + v) * L + i; - py[o] = px[o] * powf(pdat->bias + over * sum, -pdat->beta); + py[o] = px[o] * pow(pdat->bias + over * sum, -pdat->beta); } } } diff --git a/src/default/LSTM.c b/src/default/LSTM.c index 58e446c0..7cee3121 100644 --- a/src/default/LSTM.c +++ b/src/default/LSTM.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_LSTM(struct onnx_node_t * n) { diff --git a/src/default/LeakyRelu.c b/src/default/LeakyRelu.c index 7399da95..9a781c1e 100644 --- a/src/default/LeakyRelu.c +++ b/src/default/LeakyRelu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -47,7 +47,8 @@ static void LeakyRelu_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v < 0) @@ -64,7 +65,8 @@ static void LeakyRelu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? px[i] * pdat->alpha : px[i]; } @@ -76,7 +78,8 @@ static void LeakyRelu_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? px[i] * pdat->alpha : px[i]; } diff --git a/src/default/Less.c b/src/default/Less.c index a6224805..e4b4f4e1 100644 --- a/src/default/Less.c +++ b/src/default/Less.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Less_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Less_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Less_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Less_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Less_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Less_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Less_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Less_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Less_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Less_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Less_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Less_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Less_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/LessOrEqual.c b/src/default/LessOrEqual.c index 568fec39..76aa74d9 100644 --- a/src/default/LessOrEqual.c +++ b/src/default/LessOrEqual.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int LessOrEqual_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void LessOrEqual_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void LessOrEqual_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void LessOrEqual_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void LessOrEqual_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void LessOrEqual_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void LessOrEqual_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void LessOrEqual_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void LessOrEqual_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void LessOrEqual_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void LessOrEqual_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void LessOrEqual_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Log.c b/src/default/Log.c index a8f1ed4e..5758d383 100644 --- a/src/default/Log.c +++ b/src/default/Log.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Log_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Log_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(logf(v)); @@ -43,7 +44,8 @@ static void Log_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(logf(v)); @@ -57,7 +59,8 @@ static void Log_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = logf(px[i]); } @@ -68,7 +71,8 @@ static void Log_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = log(px[i]); } diff --git a/src/default/LogSoftmax.c b/src/default/LogSoftmax.c index 40ebc992..954c444e 100644 --- a/src/default/LogSoftmax.c +++ b/src/default/LogSoftmax.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_13_pdata_t { @@ -86,7 +86,7 @@ static void LogSoftmax_13_bfloat16(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - v = expf(bfloat16_to_float32(px[o]) - maxv); + v = exp(bfloat16_to_float32(px[o]) - maxv); py[o] = float32_to_bfloat16(v); sum += v; } @@ -129,7 +129,7 @@ static void LogSoftmax_13_float16(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - v = expf(float16_to_float32(px[o]) - maxv); + v = exp(float16_to_float32(px[o]) - maxv); py[o] = float32_to_float16(v); sum += v; } @@ -171,7 +171,7 @@ static void LogSoftmax_13_float32(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - py[o] = expf(px[o] - maxv); + py[o] = exp(px[o] - maxv); sum += py[o]; } if(sum != 0) @@ -301,7 +301,7 @@ static void LogSoftmax_1_11_float16(struct onnx_node_t * n) } for(j = 0, sum = 0; j < pdat->D; j++) { - v = expf(float16_to_float32(px[o + j]) - maxv); + v = exp(float16_to_float32(px[o + j]) - maxv); py[o + j] = float32_to_float16(v); sum += v; } @@ -335,7 +335,7 @@ static void LogSoftmax_1_11_float32(struct onnx_node_t * n) } for(j = 0, sum = 0; j < pdat->D; j++) { - py[o + j] = expf(px[o + j] - maxv); + py[o + j] = exp(px[o + j] - maxv); sum += py[o + j]; } if(sum != 0) diff --git a/src/default/Loop.c b/src/default/Loop.c index 5cb1d8bf..857e966a 100644 --- a/src/default/Loop.c +++ b/src/default/Loop.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Loop(struct onnx_node_t * n) { diff --git a/src/default/LpNormalization.c b/src/default/LpNormalization.c index 43b02db5..e4266311 100644 --- a/src/default/LpNormalization.c +++ b/src/default/LpNormalization.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_LpNormalization(struct onnx_node_t * n) { diff --git a/src/default/LpPool.c b/src/default/LpPool.c index 560878fb..6755b964 100644 --- a/src/default/LpPool.c +++ b/src/default/LpPool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_LpPool(struct onnx_node_t * n) { diff --git a/src/default/MatMul.c b/src/default/MatMul.c index 90c150a9..d3359962 100644 --- a/src/default/MatMul.c +++ b/src/default/MatMul.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int m; @@ -73,7 +73,9 @@ static int MatMul_reshape(struct onnx_node_t * n) return 0; dims[ndim - 2] = adims[andim - 2]; dims[ndim - 1] = bdims[bndim - 1]; - for(int i = 3; i <= ndim; i++) + + int i; + for(i = 3; i <= ndim; i++) { int alen = (andim - i) < 0 ? 1 : adims[andim - i]; int blen = (bndim - i) < 0 ? 1 : bdims[bndim - i]; @@ -98,16 +100,18 @@ static void MatMul_int32(struct onnx_node_t * n) int32_t * pb; int32_t sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } @@ -126,16 +130,18 @@ static void MatMul_int64(struct onnx_node_t * n) int64_t * pb; int64_t sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } @@ -154,16 +160,18 @@ static void MatMul_uint32(struct onnx_node_t * n) uint32_t * pb; uint32_t sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } @@ -182,16 +190,18 @@ static void MatMul_uint64(struct onnx_node_t * n) uint64_t * pb; uint64_t sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } @@ -210,18 +220,20 @@ static void MatMul_bfloat16(struct onnx_node_t * n) uint16_t * pb; float sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) - sum += bfloat16_to_float32(pa[u * pdat->k + w]) * bfloat16_to_float32(pb[w * pdat->n + v]); - py[i + u * pdat->n + v] = float32_to_bfloat16(sum); + for(w = 0; w < pdat->k; w++) + sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; + py[i + u * pdat->n + v] = sum; } } } @@ -238,18 +250,20 @@ static void MatMul_float16(struct onnx_node_t * n) uint16_t * pb; float sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) - sum += float16_to_float32(pa[u * pdat->k + w]) * float16_to_float32(pb[w * pdat->n + v]); - py[i + u * pdat->n + v] = float32_to_float16(sum); + for(w = 0; w < pdat->k; w++) + sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; + py[i + u * pdat->n + v] = sum; } } } @@ -266,16 +280,18 @@ static void MatMul_float32(struct onnx_node_t * n) float * pb; float sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } @@ -294,16 +310,18 @@ static void MatMul_float64(struct onnx_node_t * n) double * pb; double sum; - for(size_t i = 0, l = y->ndata; i < l; i += pdat->m * pdat->n) + size_t i, l; + int u, v, w; + for(i=0, l = y->ndata; i < l; i += pdat->m * pdat->n) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); - for(int u = 0; u < pdat->m; u++) + for(u = 0; u < pdat->m; u++) { - for(int v = 0; v < pdat->n; v++) + for(v = 0; v < pdat->n; v++) { sum = 0; - for(int w = 0; w < pdat->k; w++) + for(w = 0; w < pdat->k; w++) sum += pa[u * pdat->k + w] * pb[w * pdat->n + v]; py[i + u * pdat->n + v] = sum; } diff --git a/src/default/MatMulInteger.c b/src/default/MatMulInteger.c index 914130a7..4f6287f4 100644 --- a/src/default/MatMulInteger.c +++ b/src/default/MatMulInteger.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_MatMulInteger(struct onnx_node_t * n) { diff --git a/src/default/Max.c b/src/default/Max.c index 9f918ce9..b765a915 100644 --- a/src/default/Max.c +++ b/src/default/Max.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Max_init(struct onnx_node_t * n) { @@ -35,10 +35,12 @@ static void Max_int8(struct onnx_node_t * n) int8_t * px; int8_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = INT8_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -57,10 +59,12 @@ static void Max_int16(struct onnx_node_t * n) int16_t * px; int16_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = INT16_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -79,10 +83,12 @@ static void Max_int32(struct onnx_node_t * n) int32_t * px; int32_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = INT32_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -101,10 +107,12 @@ static void Max_int64(struct onnx_node_t * n) int64_t * px; int64_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = INT64_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -123,10 +131,12 @@ static void Max_uint8(struct onnx_node_t * n) uint8_t * px; uint8_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = 0; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -145,10 +155,12 @@ static void Max_uint16(struct onnx_node_t * n) uint16_t * px; uint16_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = 0; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -167,10 +179,12 @@ static void Max_uint32(struct onnx_node_t * n) uint32_t * px; uint32_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = 0; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -189,10 +203,12 @@ static void Max_uint64(struct onnx_node_t * n) uint64_t * px; uint64_t maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = 0; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -212,10 +228,12 @@ static void Max_bfloat16(struct onnx_node_t * n) float v; float maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = FLT_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -236,10 +254,12 @@ static void Max_float16(struct onnx_node_t * n) float v; float maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = FLT_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -259,10 +279,12 @@ static void Max_float32(struct onnx_node_t * n) float * px; float maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = FLT_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); @@ -281,10 +303,12 @@ static void Max_float64(struct onnx_node_t * n) double * px; double maxv; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + int j; + for(i=0, l = y->ndata; i < l; i++) { maxv = DBL_MIN; - for(int j = 0; j < n->ninput; j++) + for(j = 0; j < n->ninput; j++) { x = n->inputs[j]; px = onnx_tensor_broadcast_map_address(x, y, i); diff --git a/src/default/MaxPool.c b/src/default/MaxPool.c index f137a9fd..d5c371ef 100644 --- a/src/default/MaxPool.c +++ b/src/default/MaxPool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" enum auto_pad_t { AUTO_PAD_NOTSET = 0, diff --git a/src/default/MaxRoiPool.c b/src/default/MaxRoiPool.c index a4485cf9..746aa711 100644 --- a/src/default/MaxRoiPool.c +++ b/src/default/MaxRoiPool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_MaxRoiPool(struct onnx_node_t * n) { diff --git a/src/default/MaxUnpool.c b/src/default/MaxUnpool.c index abf7f0b5..049b5c83 100644 --- a/src/default/MaxUnpool.c +++ b/src/default/MaxUnpool.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_MaxUnpool(struct onnx_node_t * n) { diff --git a/src/default/Mean.c b/src/default/Mean.c index 704b9bd6..492e84f9 100644 --- a/src/default/Mean.c +++ b/src/default/Mean.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Mean_init(struct onnx_node_t * n) { diff --git a/src/default/MeanVarianceNormalization.c b/src/default/MeanVarianceNormalization.c index 7cc142d4..ee3e3bb1 100644 --- a/src/default/MeanVarianceNormalization.c +++ b/src/default/MeanVarianceNormalization.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_MeanVarianceNormalization(struct onnx_node_t * n) { diff --git a/src/default/Min.c b/src/default/Min.c index 7050f3bd..09e787ba 100644 --- a/src/default/Min.c +++ b/src/default/Min.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Min_init(struct onnx_node_t * n) { diff --git a/src/default/Mod.c b/src/default/Mod.c index 5d302d8b..b2dcc849 100644 --- a/src/default/Mod.c +++ b/src/default/Mod.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int fmod; @@ -52,7 +52,8 @@ static void Mod_int8(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -61,7 +62,8 @@ static void Mod_int8(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -86,7 +88,8 @@ static void Mod_int16(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -95,7 +98,8 @@ static void Mod_int16(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -120,7 +124,8 @@ static void Mod_int32(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -129,7 +134,8 @@ static void Mod_int32(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -154,7 +160,8 @@ static void Mod_int64(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -163,7 +170,8 @@ static void Mod_int64(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -187,7 +195,8 @@ static void Mod_uint8(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -196,7 +205,8 @@ static void Mod_uint8(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +227,8 @@ static void Mod_uint16(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -226,7 +237,8 @@ static void Mod_uint16(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -247,7 +259,8 @@ static void Mod_uint32(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -256,7 +269,8 @@ static void Mod_uint32(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -277,7 +291,8 @@ static void Mod_uint64(struct onnx_node_t * n) if(pdat->fmod) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -286,7 +301,8 @@ static void Mod_uint64(struct onnx_node_t * n) } else { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -304,7 +320,8 @@ static void Mod_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -321,7 +338,8 @@ static void Mod_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -338,7 +356,8 @@ static void Mod_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -355,7 +374,8 @@ static void Mod_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Mul.c b/src/default/Mul.c index 37e47762..b2dc0a30 100644 --- a/src/default/Mul.c +++ b/src/default/Mul.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Mul_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Mul_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Mul_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Mul_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Mul_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Mul_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Mul_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Mul_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Mul_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Mul_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Mul_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Mul_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Mul_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Multinomial.c b/src/default/Multinomial.c index 5090fff8..e367882b 100644 --- a/src/default/Multinomial.c +++ b/src/default/Multinomial.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t dtype; diff --git a/src/default/Neg.c b/src/default/Neg.c index 5034e029..bfbfe9ee 100644 --- a/src/default/Neg.c +++ b/src/default/Neg.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Neg_init(struct onnx_node_t * n) { @@ -27,7 +27,8 @@ static void Neg_int8(struct onnx_node_t * n) int8_t * px = (int8_t *)x->datas; int8_t * py = (int8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } @@ -38,7 +39,8 @@ static void Neg_int16(struct onnx_node_t * n) int16_t * px = (int16_t *)x->datas; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } @@ -49,7 +51,8 @@ static void Neg_int32(struct onnx_node_t * n) int32_t * px = (int32_t *)x->datas; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } @@ -60,7 +63,8 @@ static void Neg_int64(struct onnx_node_t * n) int64_t * px = (int64_t *)x->datas; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } @@ -72,7 +76,8 @@ static void Neg_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(-v); @@ -87,7 +92,8 @@ static void Neg_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(-v); @@ -101,7 +107,8 @@ static void Neg_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } @@ -112,7 +119,8 @@ static void Neg_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = -px[i]; } diff --git a/src/default/NegativeLogLikelihoodLoss.c b/src/default/NegativeLogLikelihoodLoss.c index e7cd12d4..45c24904 100644 --- a/src/default/NegativeLogLikelihoodLoss.c +++ b/src/default/NegativeLogLikelihoodLoss.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_NegativeLogLikelihoodLoss(struct onnx_node_t * n) { diff --git a/src/default/NonMaxSuppression.c b/src/default/NonMaxSuppression.c index 054fe978..8ad6b84b 100644 --- a/src/default/NonMaxSuppression.c +++ b/src/default/NonMaxSuppression.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_NonMaxSuppression(struct onnx_node_t * n) { diff --git a/src/default/NonZero.c b/src/default/NonZero.c index dbb79a06..566ee6d1 100644 --- a/src/default/NonZero.c +++ b/src/default/NonZero.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_NonZero(struct onnx_node_t * n) { diff --git a/src/default/Not.c b/src/default/Not.c index 51727fb8..f3236fe5 100644 --- a/src/default/Not.c +++ b/src/default/Not.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Not_init(struct onnx_node_t * n) { @@ -27,7 +27,8 @@ static void Not_bool(struct onnx_node_t * n) uint8_t * px = (uint8_t *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = !px[i]; } diff --git a/src/default/OneHot.c b/src/default/OneHot.c index fc59963f..cd11c25c 100644 --- a/src/default/OneHot.c +++ b/src/default/OneHot.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_OneHot(struct onnx_node_t * n) { diff --git a/src/default/Or.c b/src/default/Or.c index 9bb1c6ec..9ce55d55 100644 --- a/src/default/Or.c +++ b/src/default/Or.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Or_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Or_bool(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/PRelu.c b/src/default/PRelu.c index bb1bf002..90e2ab74 100644 --- a/src/default/PRelu.c +++ b/src/default/PRelu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int PRelu_init(struct onnx_node_t * n) { @@ -29,7 +29,8 @@ static void PRelu_int32(struct onnx_node_t * n) int32_t * pa = (int32_t *)a->datas;; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { @@ -50,7 +51,8 @@ static void PRelu_int64(struct onnx_node_t * n) int64_t * pa = (int64_t *)a->datas;; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { @@ -71,7 +73,8 @@ static void PRelu_uint32(struct onnx_node_t * n) uint32_t * pa = (uint32_t *)a->datas;; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { @@ -92,7 +95,8 @@ static void PRelu_uint64(struct onnx_node_t * n) uint64_t * pa = (uint64_t *)a->datas;; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { @@ -114,7 +118,8 @@ static void PRelu_float16(struct onnx_node_t * n) uint16_t * pb; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(pa[i]); if(v < 0) @@ -136,7 +141,8 @@ static void PRelu_float32(struct onnx_node_t * n) float * pa = (float *)a->datas;; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { @@ -157,7 +163,8 @@ static void PRelu_float64(struct onnx_node_t * n) double * pa = (double *)a->datas;; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(pa[i] < 0) { diff --git a/src/default/Pad.c b/src/default/Pad.c index 338623c4..fa84508e 100644 --- a/src/default/Pad.c +++ b/src/default/Pad.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Pad(struct onnx_node_t * n) { diff --git a/src/default/Pow.c b/src/default/Pow.c index 487d0557..07f3e75d 100644 --- a/src/default/Pow.c +++ b/src/default/Pow.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Pow_init(struct onnx_node_t * n) { @@ -83,7 +83,8 @@ static void Pow_int32(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -102,7 +103,8 @@ static void Pow_int64(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -121,7 +123,8 @@ static void Pow_bfloat16(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -140,7 +143,8 @@ static void Pow_float16(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -159,7 +163,8 @@ static void Pow_float32(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -178,7 +183,8 @@ static void Pow_float64(struct onnx_node_t * n) void * pb; double v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/QLinearConv.c b/src/default/QLinearConv.c index 550ab7df..9410e06e 100644 --- a/src/default/QLinearConv.c +++ b/src/default/QLinearConv.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_QLinearConv(struct onnx_node_t * n) { diff --git a/src/default/QLinearMatMul.c b/src/default/QLinearMatMul.c index 53183f71..90b507fe 100644 --- a/src/default/QLinearMatMul.c +++ b/src/default/QLinearMatMul.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_QLinearMatMul(struct onnx_node_t * n) { diff --git a/src/default/QuantizeLinear.c b/src/default/QuantizeLinear.c index 88a91b58..87a0ecc0 100644 --- a/src/default/QuantizeLinear.c +++ b/src/default/QuantizeLinear.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_QuantizeLinear(struct onnx_node_t * n) { diff --git a/src/default/RNN.c b/src/default/RNN.c index 57be222b..057f0c2f 100644 --- a/src/default/RNN.c +++ b/src/default/RNN.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_RNN(struct onnx_node_t * n) { diff --git a/src/default/RandomNormal.c b/src/default/RandomNormal.c index 35434225..5df9ad8f 100644 --- a/src/default/RandomNormal.c +++ b/src/default/RandomNormal.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t dtype; @@ -70,17 +70,21 @@ static void RandomNormal_operator(struct onnx_node_t * n) if(pdat->seed != 0.0) srand(pdat->seed); + + size_t i, l; + switch(pdat->dtype) { case ONNX_TENSOR_TYPE_FLOAT16: { uint16_t * py = (uint16_t *)y->datas; float ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (float)rand() / (RAND_MAX + 1.0f); tx = (float)rand() / (RAND_MAX + 1.0f); - py[i] = float16_to_float32(pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cosf(2.0f * acosf(-1.0f) * ty)); + py[i] = float16_to_float32(pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cos(2.0f * acos(-1.0f) * ty)); } } break; @@ -88,11 +92,12 @@ static void RandomNormal_operator(struct onnx_node_t * n) { float * py = (float *)y->datas; float ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (float)rand() / (RAND_MAX + 1.0f); tx = (float)rand() / (RAND_MAX + 1.0f); - py[i] = pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cosf(2.0f * acosf(-1.0f) * ty); + py[i] = pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cos(2.0f * acos(-1.0f) * ty); } } break; @@ -100,7 +105,8 @@ static void RandomNormal_operator(struct onnx_node_t * n) { double * py = (double *)y->datas; double ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (double)rand() / (RAND_MAX + 1.0f); tx = (double)rand() / (RAND_MAX + 1.0f); diff --git a/src/default/RandomNormalLike.c b/src/default/RandomNormalLike.c index 06fdbd33..6d88c914 100644 --- a/src/default/RandomNormalLike.c +++ b/src/default/RandomNormalLike.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t dtype; @@ -66,17 +66,21 @@ static void RandomNormalLike_operator(struct onnx_node_t * n) if(pdat->seed != 0.0) srand(pdat->seed); + + size_t i, l; + switch(pdat->dtype) { case ONNX_TENSOR_TYPE_FLOAT16: { uint16_t * py = (uint16_t *)y->datas; float ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (float)rand() / (RAND_MAX + 1.0f); tx = (float)rand() / (RAND_MAX + 1.0f); - py[i] = float16_to_float32(pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cosf(2.0f * acosf(-1.0f) * ty)); + py[i] = float16_to_float32(pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cos(2.0f * acos(-1.0f) * ty)); } } break; @@ -84,11 +88,12 @@ static void RandomNormalLike_operator(struct onnx_node_t * n) { float * py = (float *)y->datas; float ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (float)rand() / (RAND_MAX + 1.0f); tx = (float)rand() / (RAND_MAX + 1.0f); - py[i] = pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cosf(2.0f * acosf(-1.0f) * ty); + py[i] = pdat->mean + pdat->scale * sqrtf(-2.0f * logf(tx)) * cos(2.0f * acos(-1.0f) * ty); } } break; @@ -96,7 +101,8 @@ static void RandomNormalLike_operator(struct onnx_node_t * n) { double * py = (double *)y->datas; double ty, tx; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) { ty = (double)rand() / (RAND_MAX + 1.0f); tx = (double)rand() / (RAND_MAX + 1.0f); diff --git a/src/default/RandomUniform.c b/src/default/RandomUniform.c index de2f3644..7f0f718d 100644 --- a/src/default/RandomUniform.c +++ b/src/default/RandomUniform.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t dtype; @@ -70,26 +70,29 @@ static void RandomUniform_operator(struct onnx_node_t * n) if(pdat->seed != 0.0) srand(pdat->seed); + + size_t i, l; + switch(pdat->dtype) { case ONNX_TENSOR_TYPE_FLOAT16: { uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + for(i = 0, l = y->ndata; i < l; i++) py[i] = float16_to_float32(((float)rand() / (float)RAND_MAX) * (pdat->high - pdat->low) + pdat->low); } break; case ONNX_TENSOR_TYPE_FLOAT32: { float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + for(i = 0, l = y->ndata; i < l; i++) py[i] = ((float)rand() / (float)RAND_MAX) * (pdat->high - pdat->low) + pdat->low; } break; case ONNX_TENSOR_TYPE_FLOAT64: { double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + for(i = 0, l = y->ndata; i < l; i++) py[i] = ((double)rand() / (double)RAND_MAX) * (pdat->high - pdat->low) + pdat->low; } break; diff --git a/src/default/RandomUniformLike.c b/src/default/RandomUniformLike.c index e5a16f38..3488d574 100644 --- a/src/default/RandomUniformLike.c +++ b/src/default/RandomUniformLike.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { enum onnx_tensor_type_t dtype; @@ -66,26 +66,32 @@ static void RandomUniformLike_operator(struct onnx_node_t * n) if(pdat->seed != 0.0) srand(pdat->seed); + + size_t i, l; + switch(pdat->dtype) { case ONNX_TENSOR_TYPE_FLOAT16: { uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) py[i] = float16_to_float32(((float)rand() / (float)RAND_MAX) * (pdat->high - pdat->low) + pdat->low); } break; case ONNX_TENSOR_TYPE_FLOAT32: { float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) py[i] = ((float)rand() / (float)RAND_MAX) * (pdat->high - pdat->low) + pdat->low; } break; case ONNX_TENSOR_TYPE_FLOAT64: { double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + + for(i = 0, l = y->ndata; i < l; i++) py[i] = ((double)rand() / (double)RAND_MAX) * (pdat->high - pdat->low) + pdat->low; } break; diff --git a/src/default/Range.c b/src/default/Range.c index 651f60be..492b9090 100644 --- a/src/default/Range.c +++ b/src/default/Range.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { double start; @@ -105,7 +105,8 @@ static void Range_int16(struct onnx_node_t * n) struct onnx_tensor_t * y = n->outputs[0]; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = pdat->start + (pdat->delta * i); } @@ -115,7 +116,8 @@ static void Range_int32(struct onnx_node_t * n) struct onnx_tensor_t * y = n->outputs[0]; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = pdat->start + (pdat->delta * i); } @@ -125,7 +127,8 @@ static void Range_int64(struct onnx_node_t * n) struct onnx_tensor_t * y = n->outputs[0]; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = pdat->start + (pdat->delta * i); } @@ -135,7 +138,8 @@ static void Range_float32(struct onnx_node_t * n) struct onnx_tensor_t * y = n->outputs[0]; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = pdat->start + (pdat->delta * i); } @@ -145,7 +149,8 @@ static void Range_float64(struct onnx_node_t * n) struct onnx_tensor_t * y = n->outputs[0]; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = pdat->start + (pdat->delta * i); } diff --git a/src/default/Reciprocal.c b/src/default/Reciprocal.c index 3e33420e..07f6d6af 100644 --- a/src/default/Reciprocal.c +++ b/src/default/Reciprocal.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Reciprocal_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Reciprocal_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(1.0 / v); @@ -43,7 +44,8 @@ static void Reciprocal_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(1.0 / v); @@ -57,7 +59,8 @@ static void Reciprocal_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = 1.0 / px[i]; } @@ -68,7 +71,8 @@ static void Reciprocal_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = 1.0 / px[i]; } diff --git a/src/default/ReduceL1.c b/src/default/ReduceL1.c index 6b3a39c7..c97b1b70 100644 --- a/src/default/ReduceL1.c +++ b/src/default/ReduceL1.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceL2.c b/src/default/ReduceL2.c index 625ef112..26777c2f 100644 --- a/src/default/ReduceL2.c +++ b/src/default/ReduceL2.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceLogSum.c b/src/default/ReduceLogSum.c index 3eb9d2ad..0112ee07 100644 --- a/src/default/ReduceLogSum.c +++ b/src/default/ReduceLogSum.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceLogSumExp.c b/src/default/ReduceLogSumExp.c index b8ecb716..9ade8f13 100644 --- a/src/default/ReduceLogSumExp.c +++ b/src/default/ReduceLogSumExp.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; @@ -187,7 +187,7 @@ static void ReduceLogSumExp_int8(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -235,7 +235,7 @@ static void ReduceLogSumExp_int32(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -283,7 +283,7 @@ static void ReduceLogSumExp_int64(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -331,7 +331,7 @@ static void ReduceLogSumExp_uint8(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -379,7 +379,7 @@ static void ReduceLogSumExp_uint32(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -427,7 +427,7 @@ static void ReduceLogSumExp_uint64(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -475,7 +475,7 @@ static void ReduceLogSumExp_bfloat16(struct onnx_node_t * n) sum = 0; do { - sum += expf(bfloat16_to_float32(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)])); + sum += exp(bfloat16_to_float32(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)])); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = float32_to_bfloat16(logf(sum)); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -523,7 +523,7 @@ static void ReduceLogSumExp_float16(struct onnx_node_t * n) sum = 0; do { - sum += expf(float16_to_float32(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)])); + sum += exp(float16_to_float32(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)])); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = float32_to_float16(logf(sum)); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); @@ -571,7 +571,7 @@ static void ReduceLogSumExp_float32(struct onnx_node_t * n) sum = 0; do { - sum += expf(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); + sum += exp(px[o + dim_offset(pdat->naxes, iter_in_axes, in_axes_axis_dis)]); } while(dim_next(pdat->naxes, iter_in_axes, iter_in_axes_max)); py[i++] = logf(sum); } while(dim_next(not_in_axes_num, iter_not_in_axes, iter_not_in_axes_max)); diff --git a/src/default/ReduceMax.c b/src/default/ReduceMax.c index ed0078fe..cdca5206 100644 --- a/src/default/ReduceMax.c +++ b/src/default/ReduceMax.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceMean.c b/src/default/ReduceMean.c index 608cde31..4ecda71f 100644 --- a/src/default/ReduceMean.c +++ b/src/default/ReduceMean.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceMin.c b/src/default/ReduceMin.c index 39580644..0c795a6a 100644 --- a/src/default/ReduceMin.c +++ b/src/default/ReduceMin.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceProd.c b/src/default/ReduceProd.c index 8bc21e1c..5ae34e69 100644 --- a/src/default/ReduceProd.c +++ b/src/default/ReduceProd.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/ReduceSum.c b/src/default/ReduceSum.c index c45e4f26..442ef2d5 100644 --- a/src/default/ReduceSum.c +++ b/src/default/ReduceSum.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int keepdims; diff --git a/src/default/ReduceSumSquare.c b/src/default/ReduceSumSquare.c index 179a6e94..179896db 100644 --- a/src/default/ReduceSumSquare.c +++ b/src/default/ReduceSumSquare.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * axes; diff --git a/src/default/Relu.c b/src/default/Relu.c index c2e8e872..4e75be9c 100644 --- a/src/default/Relu.c +++ b/src/default/Relu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Relu_init(struct onnx_node_t * n) { @@ -27,7 +27,8 @@ static void Relu_int8(struct onnx_node_t * n) int8_t * px = (int8_t *)x->datas; int8_t * py = (int8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } @@ -38,7 +39,8 @@ static void Relu_int16(struct onnx_node_t * n) int16_t * px = (int16_t *)x->datas; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } @@ -49,7 +51,8 @@ static void Relu_int32(struct onnx_node_t * n) int32_t * px = (int32_t *)x->datas; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } @@ -60,7 +63,8 @@ static void Relu_int64(struct onnx_node_t * n) int64_t * px = (int64_t *)x->datas; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } @@ -72,7 +76,8 @@ static void Relu_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); if(v < 0) @@ -89,7 +94,8 @@ static void Relu_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v < 0) @@ -105,7 +111,8 @@ static void Relu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } @@ -116,7 +123,8 @@ static void Relu_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] < 0) ? 0 : px[i]; } diff --git a/src/default/Reshape.c b/src/default/Reshape.c index 3e54a4b9..1d06e67c 100644 --- a/src/default/Reshape.c +++ b/src/default/Reshape.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Reshape_init(struct onnx_node_t * n) { @@ -34,7 +34,9 @@ static int Reshape_reshape(struct onnx_node_t * n) int ndim = s->ndata; int dims[ndim]; - for(int i = 0; i < ndim; i++) + int i, j; + + for(i = 0; i < ndim; i++) { if(ps[i] == 0) dims[i] = x->dims[i]; @@ -42,9 +44,9 @@ static int Reshape_reshape(struct onnx_node_t * n) dims[i] = ps[i]; else { - for(int j = 0; j < x->ndim; j++) + for(j = 0; j < x->ndim; j++) total_dim *= x->dims[j]; - for(int j = 0; j < ndim; j++) + for(j = 0; j < ndim; j++) { if(ps[j] > 0) total_shape *= ps[j]; @@ -66,7 +68,8 @@ static void Reshape_operator(struct onnx_node_t * n) if(x->type == ONNX_TENSOR_TYPE_STRING) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(py[i]) free(py[i]); diff --git a/src/default/Resize.c b/src/default/Resize.c index 5cfb6232..109aa13e 100644 --- a/src/default/Resize.c +++ b/src/default/Resize.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Resize(struct onnx_node_t * n) { diff --git a/src/default/ReverseSequence.c b/src/default/ReverseSequence.c index c59a9040..00b01b71 100644 --- a/src/default/ReverseSequence.c +++ b/src/default/ReverseSequence.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ReverseSequence(struct onnx_node_t * n) { diff --git a/src/default/RoiAlign.c b/src/default/RoiAlign.c index 8cf72a1c..028656b2 100644 --- a/src/default/RoiAlign.c +++ b/src/default/RoiAlign.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_RoiAlign(struct onnx_node_t * n) { diff --git a/src/default/Round.c b/src/default/Round.c index ba973da5..779dbceb 100644 --- a/src/default/Round.c +++ b/src/default/Round.c @@ -1,5 +1,5 @@ #include -#include +#include "../onnx.h" static int Round_init(struct onnx_node_t * n) { @@ -33,7 +33,8 @@ static void Round_float16(struct onnx_node_t * n) } float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(nearbyintf(v)); @@ -55,7 +56,8 @@ static void Round_float32(struct onnx_node_t * n) fesetround(FE_TONEAREST); } - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = nearbyintf(px[i]); if (r != FE_TONEAREST) { @@ -74,7 +76,8 @@ static void Round_float64(struct onnx_node_t * n) fesetround(FE_TONEAREST); } - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = nearbyint(px[i]); if (r != FE_TONEAREST) { diff --git a/src/default/Scan.c b/src/default/Scan.c index 0c1e451b..22f0c9a2 100644 --- a/src/default/Scan.c +++ b/src/default/Scan.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Scan(struct onnx_node_t * n) { diff --git a/src/default/Scatter.c b/src/default/Scatter.c index 8392618c..42dca30e 100644 --- a/src/default/Scatter.c +++ b/src/default/Scatter.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Scatter(struct onnx_node_t * n) { diff --git a/src/default/ScatterElements.c b/src/default/ScatterElements.c index c817d17c..24b703ea 100644 --- a/src/default/ScatterElements.c +++ b/src/default/ScatterElements.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ScatterElements(struct onnx_node_t * n) { diff --git a/src/default/ScatterND.c b/src/default/ScatterND.c index da00667e..129e32cf 100644 --- a/src/default/ScatterND.c +++ b/src/default/ScatterND.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_ScatterND(struct onnx_node_t * n) { diff --git a/src/default/Selu.c b/src/default/Selu.c index e53b1d99..24c39dff 100644 --- a/src/default/Selu.c +++ b/src/default/Selu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -49,13 +49,14 @@ static void Selu_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v > 0) py[i] = pdat->gamma * v; else - py[i] = pdat->gamma * (pdat->alpha * expf(v) - pdat->alpha); + py[i] = pdat->gamma * (pdat->alpha * exp(v) - pdat->alpha); } } @@ -67,12 +68,13 @@ static void Selu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = pdat->gamma * px[i]; else - py[i] = pdat->gamma * (pdat->alpha * expf(px[i]) - pdat->alpha); + py[i] = pdat->gamma * (pdat->alpha * exp(px[i]) - pdat->alpha); } } @@ -84,7 +86,8 @@ static void Selu_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = pdat->gamma * px[i]; diff --git a/src/default/SequenceAt.c b/src/default/SequenceAt.c index 28b4b1c9..c7bd2baa 100644 --- a/src/default/SequenceAt.c +++ b/src/default/SequenceAt.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceAt(struct onnx_node_t * n) { diff --git a/src/default/SequenceConstruct.c b/src/default/SequenceConstruct.c index f4ee3840..b060ea90 100644 --- a/src/default/SequenceConstruct.c +++ b/src/default/SequenceConstruct.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceConstruct(struct onnx_node_t * n) { diff --git a/src/default/SequenceEmpty.c b/src/default/SequenceEmpty.c index 82bafbc7..62bed3bb 100644 --- a/src/default/SequenceEmpty.c +++ b/src/default/SequenceEmpty.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceEmpty(struct onnx_node_t * n) { diff --git a/src/default/SequenceErase.c b/src/default/SequenceErase.c index a667080d..fd6cbb84 100644 --- a/src/default/SequenceErase.c +++ b/src/default/SequenceErase.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceErase(struct onnx_node_t * n) { diff --git a/src/default/SequenceInsert.c b/src/default/SequenceInsert.c index 261394e0..ff9f6088 100644 --- a/src/default/SequenceInsert.c +++ b/src/default/SequenceInsert.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceInsert(struct onnx_node_t * n) { diff --git a/src/default/SequenceLength.c b/src/default/SequenceLength.c index b1b6ff8d..9c262885 100644 --- a/src/default/SequenceLength.c +++ b/src/default/SequenceLength.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SequenceLength(struct onnx_node_t * n) { diff --git a/src/default/Shape.c b/src/default/Shape.c index 1bf8f00d..6e9c5014 100644 --- a/src/default/Shape.c +++ b/src/default/Shape.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Shape_init(struct onnx_node_t * n) { diff --git a/src/default/Shrink.c b/src/default/Shrink.c index 8ebfdac0..9453cd2a 100644 --- a/src/default/Shrink.c +++ b/src/default/Shrink.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float bias; @@ -48,7 +48,8 @@ static void Shrink_int8(struct onnx_node_t * n) int8_t * px = (int8_t *)x->datas; int8_t * py = (int8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -67,7 +68,8 @@ static void Shrink_int16(struct onnx_node_t * n) int16_t * px = (int16_t *)x->datas; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -86,7 +88,8 @@ static void Shrink_int32(struct onnx_node_t * n) int32_t * px = (int32_t *)x->datas; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -105,7 +108,8 @@ static void Shrink_int64(struct onnx_node_t * n) int64_t * px = (int64_t *)x->datas; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -124,7 +128,8 @@ static void Shrink_uint8(struct onnx_node_t * n) uint8_t * px = (uint8_t *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -143,7 +148,8 @@ static void Shrink_uint16(struct onnx_node_t * n) uint16_t * px = (uint16_t *)x->datas; uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -162,7 +168,8 @@ static void Shrink_uint32(struct onnx_node_t * n) uint32_t * px = (uint32_t *)x->datas; uint32_t * py = (uint32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -181,7 +188,8 @@ static void Shrink_uint64(struct onnx_node_t * n) uint64_t * px = (uint64_t *)x->datas; uint64_t * py = (uint64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -201,7 +209,8 @@ static void Shrink_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v < -pdat->lambd) @@ -221,7 +230,8 @@ static void Shrink_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; @@ -240,7 +250,8 @@ static void Shrink_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] < -pdat->lambd) py[i] = px[i] + pdat->bias; diff --git a/src/default/Sigmoid.c b/src/default/Sigmoid.c index 906d9c7e..0e18a204 100644 --- a/src/default/Sigmoid.c +++ b/src/default/Sigmoid.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sigmoid_init(struct onnx_node_t * n) { @@ -28,13 +28,14 @@ static void Sigmoid_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); if(v >= 0) - py[i] = float32_to_bfloat16(1.0 / (1.0 + expf(-1 * v))); + py[i] = float32_to_bfloat16(1.0 / (1.0 + exp(-1 * v))); else - py[i] = float32_to_bfloat16(expf(v) / (1.0 + expf(v))); + py[i] = float32_to_bfloat16(exp(v) / (1.0 + exp(v))); } } @@ -46,13 +47,14 @@ static void Sigmoid_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v >= 0) - py[i] = float32_to_float16(1.0 / (1.0 + expf(-1 * v))); + py[i] = float32_to_float16(1.0 / (1.0 + exp(-1 * v))); else - py[i] = float32_to_float16(expf(v) / (1.0 + expf(v))); + py[i] = float32_to_float16(exp(v) / (1.0 + exp(v))); } } @@ -63,12 +65,13 @@ static void Sigmoid_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] >= 0) - py[i] = 1.0 / (1.0 + expf(-1 * px[i])); + py[i] = 1.0 / (1.0 + exp(-1 * px[i])); else - py[i] = expf(px[i]) / (1.0 + expf(px[i])); + py[i] = exp(px[i]) / (1.0 + exp(px[i])); } } @@ -79,7 +82,8 @@ static void Sigmoid_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] >= 0) py[i] = 1.0 / (1.0 + exp(-1 * px[i])); diff --git a/src/default/Sign.c b/src/default/Sign.c index 269c40b7..6e175296 100644 --- a/src/default/Sign.c +++ b/src/default/Sign.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sign_init(struct onnx_node_t * n) { @@ -27,7 +27,8 @@ static void Sign_int8(struct onnx_node_t * n) int8_t * px = (int8_t *)x->datas; int8_t * py = (int8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -45,7 +46,8 @@ static void Sign_int16(struct onnx_node_t * n) int16_t * px = (int16_t *)x->datas; int16_t * py = (int16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -63,7 +65,8 @@ static void Sign_int32(struct onnx_node_t * n) int32_t * px = (int32_t *)x->datas; int32_t * py = (int32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -81,7 +84,8 @@ static void Sign_int64(struct onnx_node_t * n) int64_t * px = (int64_t *)x->datas; int64_t * py = (int64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -99,7 +103,8 @@ static void Sign_uint8(struct onnx_node_t * n) uint8_t * px = (uint8_t *)x->datas; uint8_t * py = (uint8_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -117,7 +122,8 @@ static void Sign_uint16(struct onnx_node_t * n) uint16_t * px = (uint16_t *)x->datas; uint16_t * py = (uint16_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -135,7 +141,8 @@ static void Sign_uint32(struct onnx_node_t * n) uint32_t * px = (uint32_t *)x->datas; uint32_t * py = (uint32_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -153,7 +160,8 @@ static void Sign_uint64(struct onnx_node_t * n) uint64_t * px = (uint64_t *)x->datas; uint64_t * py = (uint64_t *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -172,7 +180,8 @@ static void Sign_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); if(v > 0) @@ -192,7 +201,8 @@ static void Sign_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); if(v > 0) @@ -211,7 +221,8 @@ static void Sign_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; @@ -229,7 +240,8 @@ static void Sign_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(px[i] > 0) py[i] = 1; diff --git a/src/default/Sin.c b/src/default/Sin.c index b9f53d2d..ed8e496b 100644 --- a/src/default/Sin.c +++ b/src/default/Sin.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sin_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Sin_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(sinf(v)); + py[i] = float32_to_float16(sin(v)); } } @@ -42,8 +43,9 @@ static void Sin_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = sinf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = sin(px[i]); } static void Sin_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Sin_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = sin(px[i]); } diff --git a/src/default/Sinh.c b/src/default/Sinh.c index d86f5e3f..a3255819 100644 --- a/src/default/Sinh.c +++ b/src/default/Sinh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sinh_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Sinh_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(sinhf(v)); + py[i] = float32_to_float16(sinh(v)); } } @@ -42,8 +43,9 @@ static void Sinh_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = sinhf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = sinh(px[i]); } static void Sinh_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Sinh_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = sinh(px[i]); } diff --git a/src/default/Size.c b/src/default/Size.c index 60331fc2..642a2bb8 100644 --- a/src/default/Size.c +++ b/src/default/Size.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Size_init(struct onnx_node_t * n) { diff --git a/src/default/Slice.c b/src/default/Slice.c index 1adcdb28..3b4fe82f 100644 --- a/src/default/Slice.c +++ b/src/default/Slice.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Slice(struct onnx_node_t * n) { diff --git a/src/default/Softmax.c b/src/default/Softmax.c index 9eacaef1..8ada5dc7 100644 --- a/src/default/Softmax.c +++ b/src/default/Softmax.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_13_pdata_t { @@ -86,7 +86,7 @@ static void Softmax_13_bfloat16(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - v = expf(bfloat16_to_float32(px[o]) - maxv); + v = exp(bfloat16_to_float32(px[o]) - maxv); py[o] = float32_to_bfloat16(v); sum += v; } @@ -129,7 +129,7 @@ static void Softmax_13_float16(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - v = expf(float16_to_float32(px[o]) - maxv); + v = exp(float16_to_float32(px[o]) - maxv); py[o] = float32_to_float16(v); sum += v; } @@ -171,7 +171,7 @@ static void Softmax_13_float32(struct onnx_node_t * n) for(j = 0, sum = 0; j < pdat->current; j++) { o = io + j * pdat->inner; - py[o] = expf(px[o] - maxv); + py[o] = exp(px[o] - maxv); sum += py[o]; } if(sum != 0) @@ -301,7 +301,7 @@ static void Softmax_1_11_float16(struct onnx_node_t * n) } for(j = 0, sum = 0; j < pdat->D; j++) { - v = expf(float16_to_float32(px[o + j]) - maxv); + v = exp(float16_to_float32(px[o + j]) - maxv); py[o + j] = float32_to_float16(v); sum += v; } @@ -335,7 +335,7 @@ static void Softmax_1_11_float32(struct onnx_node_t * n) } for(j = 0, sum = 0; j < pdat->D; j++) { - py[o + j] = expf(px[o + j] - maxv); + py[o + j] = exp(px[o + j] - maxv); sum += py[o + j]; } if(sum != 0) diff --git a/src/default/SoftmaxCrossEntropyLoss.c b/src/default/SoftmaxCrossEntropyLoss.c index 19166bbe..b779a1e2 100644 --- a/src/default/SoftmaxCrossEntropyLoss.c +++ b/src/default/SoftmaxCrossEntropyLoss.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SoftmaxCrossEntropyLoss(struct onnx_node_t * n) { diff --git a/src/default/Softplus.c b/src/default/Softplus.c index a94d3e0a..8b923ca5 100644 --- a/src/default/Softplus.c +++ b/src/default/Softplus.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Softplus_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Softplus_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(logf(expf(v) + 1)); + py[i] = float32_to_float16(logf(exp(v) + 1)); } } @@ -42,8 +43,9 @@ static void Softplus_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = logf(expf(px[i]) + 1); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = logf(exp(px[i]) + 1); } static void Softplus_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Softplus_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = log(exp(px[i]) + 1); } diff --git a/src/default/Softsign.c b/src/default/Softsign.c index b86784ef..6a734803 100644 --- a/src/default/Softsign.c +++ b/src/default/Softsign.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Softsign_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Softsign_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(v / (1 + fabsf(v))); @@ -42,7 +43,8 @@ static void Softsign_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i] / (1 + fabsf(px[i])); } @@ -53,7 +55,8 @@ static void Softsign_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = px[i] / (1 + fabs(px[i])); } diff --git a/src/default/SpaceToDepth.c b/src/default/SpaceToDepth.c index 71a4bf72..1dd3742d 100644 --- a/src/default/SpaceToDepth.c +++ b/src/default/SpaceToDepth.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SpaceToDepth(struct onnx_node_t * n) { diff --git a/src/default/Split.c b/src/default/Split.c index 69a9c999..0b6582f1 100644 --- a/src/default/Split.c +++ b/src/default/Split.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Split(struct onnx_node_t * n) { diff --git a/src/default/SplitToSequence.c b/src/default/SplitToSequence.c index bf6811b8..c10a669d 100644 --- a/src/default/SplitToSequence.c +++ b/src/default/SplitToSequence.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_SplitToSequence(struct onnx_node_t * n) { diff --git a/src/default/Sqrt.c b/src/default/Sqrt.c index 7bdffc62..8baebd34 100644 --- a/src/default/Sqrt.c +++ b/src/default/Sqrt.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sqrt_init(struct onnx_node_t * n) { @@ -28,7 +28,8 @@ static void Sqrt_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); py[i] = float32_to_bfloat16(sqrtf(v)); @@ -43,7 +44,8 @@ static void Sqrt_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = float32_to_float16(sqrtf(v)); @@ -57,7 +59,8 @@ static void Sqrt_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = sqrtf(px[i]); } @@ -68,7 +71,8 @@ static void Sqrt_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = sqrt(px[i]); } diff --git a/src/default/Squeeze.c b/src/default/Squeeze.c index 12e41a6b..0e61f241 100644 --- a/src/default/Squeeze.c +++ b/src/default/Squeeze.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Squeeze_init(struct onnx_node_t * n) { @@ -69,7 +69,8 @@ static void Squeeze_operator(struct onnx_node_t * n) if(x->type == ONNX_TENSOR_TYPE_STRING) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(py[i]) free(py[i]); diff --git a/src/default/StringNormalizer.c b/src/default/StringNormalizer.c index 3a3275cc..66d29324 100644 --- a/src/default/StringNormalizer.c +++ b/src/default/StringNormalizer.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_StringNormalizer(struct onnx_node_t * n) { diff --git a/src/default/Sub.c b/src/default/Sub.c index 22e59fce..9293911f 100644 --- a/src/default/Sub.c +++ b/src/default/Sub.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sub_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Sub_int8(struct onnx_node_t * n) int8_t * pa; int8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -47,7 +48,8 @@ static void Sub_int16(struct onnx_node_t * n) int16_t * pa; int16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -64,7 +66,8 @@ static void Sub_int32(struct onnx_node_t * n) int32_t * pa; int32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -81,7 +84,8 @@ static void Sub_int64(struct onnx_node_t * n) int64_t * pa; int64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -98,7 +102,8 @@ static void Sub_uint8(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -115,7 +120,8 @@ static void Sub_uint16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -132,7 +138,8 @@ static void Sub_uint32(struct onnx_node_t * n) uint32_t * pa; uint32_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -149,7 +156,8 @@ static void Sub_uint64(struct onnx_node_t * n) uint64_t * pa; uint64_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -166,7 +174,8 @@ static void Sub_bfloat16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -183,7 +192,8 @@ static void Sub_float16(struct onnx_node_t * n) uint16_t * pa; uint16_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -200,7 +210,8 @@ static void Sub_float32(struct onnx_node_t * n) float * pa; float * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); @@ -217,7 +228,8 @@ static void Sub_float64(struct onnx_node_t * n) double * pa; double * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/Sum.c b/src/default/Sum.c index 2f932d5a..9f152300 100644 --- a/src/default/Sum.c +++ b/src/default/Sum.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Sum_init(struct onnx_node_t * n) { @@ -36,7 +36,8 @@ static void Sum_bfloat16(struct onnx_node_t * n) float sum; int j; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { for(j = 0, sum = 0; j < n->ninput; j++) { @@ -57,7 +58,8 @@ static void Sum_float16(struct onnx_node_t * n) float sum; int j; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { for(j = 0, sum = 0; j < n->ninput; j++) { @@ -78,7 +80,8 @@ static void Sum_float32(struct onnx_node_t * n) float sum; int j; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { for(j = 0, sum = 0; j < n->ninput; j++) { @@ -99,7 +102,8 @@ static void Sum_float64(struct onnx_node_t * n) double sum; int j; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { for(j = 0, sum = 0; j < n->ninput; j++) { diff --git a/src/default/Tan.c b/src/default/Tan.c index 60621c8f..dbd327f4 100644 --- a/src/default/Tan.c +++ b/src/default/Tan.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Tan_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Tan_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(tanf(v)); + py[i] = float32_to_float16(tan(v)); } } @@ -42,8 +43,9 @@ static void Tan_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = tanf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = tan(px[i]); } static void Tan_float64(struct onnx_node_t * n) @@ -53,7 +55,8 @@ static void Tan_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = tan(px[i]); } diff --git a/src/default/Tanh.c b/src/default/Tanh.c index f5a51302..eab70315 100644 --- a/src/default/Tanh.c +++ b/src/default/Tanh.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Tanh_init(struct onnx_node_t * n) { @@ -28,10 +28,11 @@ static void Tanh_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = bfloat16_to_float32(px[i]); - py[i] = float32_to_bfloat16(tanhf(v)); + py[i] = float32_to_bfloat16(tanh(v)); } } @@ -43,10 +44,11 @@ static void Tanh_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); - py[i] = float32_to_float16(tanhf(v)); + py[i] = float32_to_float16(tanh(v)); } } @@ -57,8 +59,9 @@ static void Tanh_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) - py[i] = tanhf(px[i]); + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) + py[i] = tanh(px[i]); } static void Tanh_float64(struct onnx_node_t * n) @@ -68,7 +71,8 @@ static void Tanh_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = tanh(px[i]); } diff --git a/src/default/TfIdfVectorizer.c b/src/default/TfIdfVectorizer.c index 5502ed70..26a444af 100644 --- a/src/default/TfIdfVectorizer.c +++ b/src/default/TfIdfVectorizer.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_TfIdfVectorizer(struct onnx_node_t * n) { diff --git a/src/default/ThresholdedRelu.c b/src/default/ThresholdedRelu.c index 4f038662..22246d0e 100644 --- a/src/default/ThresholdedRelu.c +++ b/src/default/ThresholdedRelu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { float alpha; @@ -47,7 +47,8 @@ static void ThresholdedRelu_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; float v; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { v = float16_to_float32(px[i]); py[i] = (v > pdat->alpha) ? float32_to_float16(v) : 0; @@ -62,7 +63,8 @@ static void ThresholdedRelu_float32(struct onnx_node_t * n) float * px = (float *)x->datas; float * py = (float *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] > pdat->alpha) ? px[i] : 0; } @@ -74,7 +76,8 @@ static void ThresholdedRelu_float64(struct onnx_node_t * n) double * px = (double *)x->datas; double * py = (double *)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) py[i] = (px[i] > pdat->alpha) ? px[i] : 0; } diff --git a/src/default/Tile.c b/src/default/Tile.c index 74dd679a..8fea9bf2 100644 --- a/src/default/Tile.c +++ b/src/default/Tile.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Tile_init(struct onnx_node_t * n) { @@ -34,7 +34,8 @@ static void Tile_bool(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; uint8_t * px = (uint8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -48,7 +49,8 @@ static void Tile_int8(struct onnx_node_t * n) int8_t * py = (int8_t *)y->datas; int8_t * px = (int8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -62,7 +64,8 @@ static void Tile_int16(struct onnx_node_t * n) int16_t * py = (int16_t *)y->datas; int16_t * px = (int16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -76,7 +79,8 @@ static void Tile_int32(struct onnx_node_t * n) int32_t * py = (int32_t *)y->datas; int32_t * px = (int32_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -90,7 +94,8 @@ static void Tile_int64(struct onnx_node_t * n) int64_t * py = (int64_t *)y->datas; int64_t * px = (int64_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -104,7 +109,8 @@ static void Tile_uint8(struct onnx_node_t * n) uint8_t * py = (uint8_t *)y->datas; uint8_t * px = (uint8_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -118,7 +124,8 @@ static void Tile_uint16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -132,7 +139,8 @@ static void Tile_uint32(struct onnx_node_t * n) uint32_t * py = (uint32_t *)y->datas; uint32_t * px = (uint32_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -146,7 +154,8 @@ static void Tile_uint64(struct onnx_node_t * n) uint64_t * py = (uint64_t *)y->datas; uint64_t * px = (uint64_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -160,7 +169,8 @@ static void Tile_bfloat16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -174,7 +184,8 @@ static void Tile_float16(struct onnx_node_t * n) uint16_t * py = (uint16_t *)y->datas; uint16_t * px = (uint16_t *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -188,7 +199,8 @@ static void Tile_float32(struct onnx_node_t * n) float * py = (float *)y->datas; float * px = (float *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -202,7 +214,8 @@ static void Tile_float64(struct onnx_node_t * n) double * py = (double *)y->datas; double * px = (double *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i] = *px; @@ -216,7 +229,8 @@ static void Tile_complex64(struct onnx_node_t * n) float * py = (float *)y->datas; float * px = (float *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i * 2] = px[0]; @@ -231,7 +245,8 @@ static void Tile_complex128(struct onnx_node_t * n) double * py = (double *)y->datas; double * px = (double *)x->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); py[i * 2] = px[0]; @@ -246,7 +261,8 @@ static void Tile_string(struct onnx_node_t * n) char ** px = (char **)x->datas; char ** py = (char **)y->datas; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { px = onnx_tensor_broadcast_map_address(x, y, i); if(py[i]) diff --git a/src/default/TopK.c b/src/default/TopK.c index 50ca64eb..d480ad57 100644 --- a/src/default/TopK.c +++ b/src/default/TopK.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_TopK(struct onnx_node_t * n) { diff --git a/src/default/Transpose.c b/src/default/Transpose.c index 740cf6ac..04322639 100644 --- a/src/default/Transpose.c +++ b/src/default/Transpose.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" struct operator_pdata_t { int * perm; diff --git a/src/default/Trilu.c b/src/default/Trilu.c index 79e46a84..73c70879 100644 --- a/src/default/Trilu.c +++ b/src/default/Trilu.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Trilu(struct onnx_node_t * n) { diff --git a/src/default/Unique.c b/src/default/Unique.c index 3e9b3a5e..8f84fd0c 100644 --- a/src/default/Unique.c +++ b/src/default/Unique.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Unique(struct onnx_node_t * n) { diff --git a/src/default/Unsqueeze.c b/src/default/Unsqueeze.c index fc523adf..f3e35777 100644 --- a/src/default/Unsqueeze.c +++ b/src/default/Unsqueeze.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Unsqueeze_init(struct onnx_node_t * n) { @@ -49,7 +49,8 @@ static void Unsqueeze_operator(struct onnx_node_t * n) if(x->type == ONNX_TENSOR_TYPE_STRING) { - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { if(py[i]) free(py[i]); diff --git a/src/default/Upsample.c b/src/default/Upsample.c index 0eb29a3e..c1b73b91 100644 --- a/src/default/Upsample.c +++ b/src/default/Upsample.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" void resolver_default_op_Upsample(struct onnx_node_t * n) { diff --git a/src/default/Where.c b/src/default/Where.c index 1e4fbe77..2f44af3e 100644 --- a/src/default/Where.c +++ b/src/default/Where.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Where_init(struct onnx_node_t * n) { @@ -37,7 +37,8 @@ static void Where_bool(struct onnx_node_t * n) uint8_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -58,7 +59,8 @@ static void Where_int8(struct onnx_node_t * n) int8_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -79,7 +81,8 @@ static void Where_int16(struct onnx_node_t * n) int16_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -100,7 +103,8 @@ static void Where_int32(struct onnx_node_t * n) int32_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -121,7 +125,8 @@ static void Where_int64(struct onnx_node_t * n) int64_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -142,7 +147,8 @@ static void Where_uint8(struct onnx_node_t * n) uint8_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -163,7 +169,8 @@ static void Where_uint16(struct onnx_node_t * n) uint16_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -184,7 +191,8 @@ static void Where_uint32(struct onnx_node_t * n) uint32_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -205,7 +213,8 @@ static void Where_uint64(struct onnx_node_t * n) uint64_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -226,7 +235,8 @@ static void Where_bfloat16(struct onnx_node_t * n) uint16_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -247,7 +257,8 @@ static void Where_float16(struct onnx_node_t * n) uint16_t * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -268,7 +279,8 @@ static void Where_float32(struct onnx_node_t * n) float * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -289,7 +301,8 @@ static void Where_float64(struct onnx_node_t * n) double * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -310,7 +323,8 @@ static void Where_complex64(struct onnx_node_t * n) float * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -332,7 +346,8 @@ static void Where_complex128(struct onnx_node_t * n) double * px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) @@ -354,7 +369,8 @@ static void Where_string(struct onnx_node_t * n) char ** px; uint8_t * c; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { c = onnx_tensor_broadcast_map_address(x0, y, i); if(*c) diff --git a/src/default/Xor.c b/src/default/Xor.c index 7d3e731a..4dce2e64 100644 --- a/src/default/Xor.c +++ b/src/default/Xor.c @@ -1,4 +1,4 @@ -#include +#include "../onnx.h" static int Xor_init(struct onnx_node_t * n) { @@ -30,7 +30,8 @@ static void Xor_bool(struct onnx_node_t * n) uint8_t * pa; uint8_t * pb; - for(size_t i = 0, l = y->ndata; i < l; i++) + size_t i,l; + for(i=0, l = y->ndata; i < l; i++) { pa = onnx_tensor_broadcast_map_address(a, y, i); pb = onnx_tensor_broadcast_map_address(b, y, i); diff --git a/src/default/default.c b/src/default/default.c index 277aa474..3a0e305b 100644 --- a/src/default/default.c +++ b/src/default/default.c @@ -1,4 +1,4 @@ -#include +#include "default.h" void * resolver_default_create(void) { diff --git a/src/default/default.h b/src/default/default.h index 60182573..1fa126b2 100644 --- a/src/default/default.h +++ b/src/default/default.h @@ -5,7 +5,7 @@ extern "C" { #endif -#include +#include "../onnx.h" void * resolver_default_create(void); void resolver_default_destroy(void * rctx); diff --git a/src/hmap.c b/src/hmap.c index 1abb938a..63eddb5f 100644 --- a/src/hmap.c +++ b/src/hmap.c @@ -25,7 +25,7 @@ * */ -#include +#include "hmap.h" static inline int fls_generic(unsigned int word) { diff --git a/src/hmap.h b/src/hmap.h index 6a47b585..a74d2929 100644 --- a/src/hmap.h +++ b/src/hmap.h @@ -5,7 +5,7 @@ extern "C" { #endif -#include +#include "onnxconf.h" struct hmap_entry_t { struct hlist_node node; diff --git a/src/onnx.c b/src/onnx.c index c622759b..6c4d3695 100644 --- a/src/onnx.c +++ b/src/onnx.c @@ -25,8 +25,8 @@ * */ -#include -#include +#include "onnx.h" +#include "default/default.h" #define ONNX_LOG(...) printf(__VA_ARGS__) @@ -1416,6 +1416,7 @@ struct onnx_tensor_t * onnx_tensor_alloc_from_file(const char * filename) void onnx_tensor_free(struct onnx_tensor_t * t) { char ** str; + size_t idx; if(t) { @@ -1433,7 +1434,7 @@ void onnx_tensor_free(struct onnx_tensor_t * t) if(t->type == ONNX_TENSOR_TYPE_STRING) { str = (char **)t->datas; - for(size_t idx = 0; idx < t->ndata; idx++) + for(idx = 0; idx < t->ndata; idx++) { if(str[idx]) free(str[idx]); @@ -1562,7 +1563,7 @@ int onnx_tensor_equal(struct onnx_tensor_t * a, struct onnx_tensor_t * b) void onnx_tensor_reinit(struct onnx_tensor_t * t, enum onnx_tensor_type_t type, int * dims, int ndim) { char ** str; - size_t n; + size_t n, idx; int sz, i; if(t) @@ -1586,7 +1587,7 @@ void onnx_tensor_reinit(struct onnx_tensor_t * t, enum onnx_tensor_type_t type, if(t->type == ONNX_TENSOR_TYPE_STRING) { str = (char **)t->datas; - for(size_t idx = 0; idx < t->ndata; idx++) + for(idx = 0; idx < t->ndata; idx++) { if(str[idx]) { @@ -1664,7 +1665,7 @@ void onnx_tensor_reinit(struct onnx_tensor_t * t, enum onnx_tensor_type_t type, void onnx_tensor_apply(struct onnx_tensor_t * t, void * buf, size_t len) { - size_t l; + size_t l, idx; int sz; if(t) @@ -1678,7 +1679,7 @@ void onnx_tensor_apply(struct onnx_tensor_t * t, void * buf, size_t len) { char ** p = (char **)t->datas; char ** q = (char **)buf; - for(size_t idx = 0; idx < t->ndata; idx++) + for(idx = 0; idx < t->ndata; idx++) { if(p[idx]) { @@ -1687,7 +1688,7 @@ void onnx_tensor_apply(struct onnx_tensor_t * t, void * buf, size_t len) } } l = min(t->ndata, (size_t)len); - for(size_t idx = 0; idx < l; idx++) + for(idx = 0; idx < l; idx++) p[idx] = strdup(q[idx]); } else @@ -1744,6 +1745,10 @@ char * onnx_attribute_read_string(struct onnx_node_t * n, const char * name, cha { if(attr->s.len > 0) { + attr->s.data=realloc(attr->s.data,attr->s.len+1); + if(attr->s.data==NULL) + return def; + attr->s.data[attr->s.len] = 0; return (char *)attr->s.data; } @@ -1839,6 +1844,8 @@ void onnx_tensor_dump(struct onnx_tensor_t * t, int detail) void * p; int i, j, k; + size_t idx; + if(t) { ONNX_LOG("%s: %s", t->name, onnx_tensor_type_tostring(t->type)); @@ -1873,7 +1880,7 @@ void onnx_tensor_dump(struct onnx_tensor_t * t, int detail) sizes[i] = t->dims[i] * sizes[i + 1]; levels[i] = 0; } - for(size_t idx = 0; idx < t->ndata; idx++) + for(idx = 0; idx < t->ndata; idx++) { for(j = 0; j < t->ndim; j++) { diff --git a/src/onnx.h b/src/onnx.h index dc90436c..6b10f339 100644 --- a/src/onnx.h +++ b/src/onnx.h @@ -5,8 +5,8 @@ extern "C" { #endif -#include -#include +#include "onnxconf.h" +#include "onnx.proto3.pb-c.h" #define LIBONNX_MAJOY (1) #define LIBONNX_MINIOR (0) diff --git a/src/onnx.proto3.pb-c.c b/src/onnx.proto3.pb-c.c index 486f4eff..c519bba1 100644 --- a/src/onnx.proto3.pb-c.c +++ b/src/onnx.proto3.pb-c.c @@ -532,6 +532,18 @@ void onnx__type_proto__map__init static const Onnx__TypeProto__Map init_value = ONNX__TYPE_PROTO__MAP__INIT; *message = init_value; } +void onnx__type_proto__optional__init + (Onnx__TypeProto__Optional *message) +{ + static const Onnx__TypeProto__Optional init_value = ONNX__TYPE_PROTO__OPTIONAL__INIT; + *message = init_value; +} +void onnx__type_proto__sparse_tensor__init + (Onnx__TypeProto__SparseTensor *message) +{ + static const Onnx__TypeProto__SparseTensor init_value = ONNX__TYPE_PROTO__SPARSE_TENSOR__INIT; + *message = init_value; +} void onnx__type_proto__init (Onnx__TypeProto *message) { @@ -622,7 +634,52 @@ void onnx__operator_set_id_proto__free_unpacked assert(message->base.descriptor == &onnx__operator_set_id_proto__descriptor); protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator); } -static const ProtobufCEnumValue onnx__attribute_proto__attribute_type__enum_values_by_number[13] = +void onnx__function_proto__init + (Onnx__FunctionProto *message) +{ + static const Onnx__FunctionProto init_value = ONNX__FUNCTION_PROTO__INIT; + *message = init_value; +} +size_t onnx__function_proto__get_packed_size + (const Onnx__FunctionProto *message) +{ + assert(message->base.descriptor == &onnx__function_proto__descriptor); + return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message)); +} +size_t onnx__function_proto__pack + (const Onnx__FunctionProto *message, + uint8_t *out) +{ + assert(message->base.descriptor == &onnx__function_proto__descriptor); + return protobuf_c_message_pack ((const ProtobufCMessage*)message, out); +} +size_t onnx__function_proto__pack_to_buffer + (const Onnx__FunctionProto *message, + ProtobufCBuffer *buffer) +{ + assert(message->base.descriptor == &onnx__function_proto__descriptor); + return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer); +} +Onnx__FunctionProto * + onnx__function_proto__unpack + (ProtobufCAllocator *allocator, + size_t len, + const uint8_t *data) +{ + return (Onnx__FunctionProto *) + protobuf_c_message_unpack (&onnx__function_proto__descriptor, + allocator, len, data); +} +void onnx__function_proto__free_unpacked + (Onnx__FunctionProto *message, + ProtobufCAllocator *allocator) +{ + if(!message) + return; + assert(message->base.descriptor == &onnx__function_proto__descriptor); + protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator); +} +static const ProtobufCEnumValue onnx__attribute_proto__attribute_type__enum_values_by_number[15] = { { "UNDEFINED", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__UNDEFINED", 0 }, { "FLOAT", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__FLOAT", 1 }, @@ -637,11 +694,13 @@ static const ProtobufCEnumValue onnx__attribute_proto__attribute_type__enum_valu { "GRAPHS", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__GRAPHS", 10 }, { "SPARSE_TENSOR", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__SPARSE_TENSOR", 11 }, { "SPARSE_TENSORS", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__SPARSE_TENSORS", 12 }, + { "TYPE_PROTO", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TYPE_PROTO", 13 }, + { "TYPE_PROTOS", "ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TYPE_PROTOS", 14 }, }; static const ProtobufCIntRange onnx__attribute_proto__attribute_type__value_ranges[] = { -{0, 0},{0, 13} +{0, 0},{0, 15} }; -static const ProtobufCEnumValueIndex onnx__attribute_proto__attribute_type__enum_values_by_name[13] = +static const ProtobufCEnumValueIndex onnx__attribute_proto__attribute_type__enum_values_by_name[15] = { { "FLOAT", 1 }, { "FLOATS", 6 }, @@ -655,6 +714,8 @@ static const ProtobufCEnumValueIndex onnx__attribute_proto__attribute_type__enum { "STRINGS", 8 }, { "TENSOR", 4 }, { "TENSORS", 9 }, + { "TYPE_PROTO", 13 }, + { "TYPE_PROTOS", 14 }, { "UNDEFINED", 0 }, }; const ProtobufCEnumDescriptor onnx__attribute_proto__attribute_type__descriptor = @@ -664,15 +725,15 @@ const ProtobufCEnumDescriptor onnx__attribute_proto__attribute_type__descriptor "AttributeType", "Onnx__AttributeProto__AttributeType", "onnx", - 13, + 15, onnx__attribute_proto__attribute_type__enum_values_by_number, - 13, + 15, onnx__attribute_proto__attribute_type__enum_values_by_name, 1, onnx__attribute_proto__attribute_type__value_ranges, NULL,NULL,NULL,NULL /* reserved[1234] */ }; -static const ProtobufCFieldDescriptor onnx__attribute_proto__field_descriptors[16] = +static const ProtobufCFieldDescriptor onnx__attribute_proto__field_descriptors[18] = { { "name", @@ -818,6 +879,30 @@ static const ProtobufCFieldDescriptor onnx__attribute_proto__field_descriptors[1 0, /* flags */ 0,NULL,NULL /* reserved1,reserved2, etc */ }, + { + "tp", + 14, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_MESSAGE, + 0, /* quantifier_offset */ + offsetof(Onnx__AttributeProto, tp), + &onnx__type_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "type_protos", + 15, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__AttributeProto, n_type_protos), + offsetof(Onnx__AttributeProto, type_protos), + &onnx__type_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, { "type", 20, @@ -876,21 +961,23 @@ static const unsigned onnx__attribute_proto__field_indices_by_name[] = { 2, /* field[2] = i */ 7, /* field[7] = ints */ 0, /* field[0] = name */ - 13, /* field[13] = ref_attr_name */ + 15, /* field[15] = ref_attr_name */ 3, /* field[3] = s */ - 14, /* field[14] = sparse_tensor */ - 15, /* field[15] = sparse_tensors */ + 16, /* field[16] = sparse_tensor */ + 17, /* field[17] = sparse_tensors */ 8, /* field[8] = strings */ 4, /* field[4] = t */ 9, /* field[9] = tensors */ - 12, /* field[12] = type */ + 12, /* field[12] = tp */ + 14, /* field[14] = type */ + 13, /* field[13] = type_protos */ }; static const ProtobufCIntRange onnx__attribute_proto__number_ranges[3 + 1] = { { 1, 0 }, { 13, 11 }, - { 20, 12 }, - { 0, 16 } + { 20, 14 }, + { 0, 18 } }; const ProtobufCMessageDescriptor onnx__attribute_proto__descriptor = { @@ -900,7 +987,7 @@ const ProtobufCMessageDescriptor onnx__attribute_proto__descriptor = "Onnx__AttributeProto", "onnx", sizeof(Onnx__AttributeProto), - 16, + 18, onnx__attribute_proto__field_descriptors, onnx__attribute_proto__field_indices_by_name, 3, onnx__attribute_proto__number_ranges, @@ -1164,7 +1251,7 @@ const ProtobufCMessageDescriptor onnx__training_info_proto__descriptor = (ProtobufCMessageInit) onnx__training_info_proto__init, NULL,NULL,NULL /* reserved[123] */ }; -static const ProtobufCFieldDescriptor onnx__model_proto__field_descriptors[10] = +static const ProtobufCFieldDescriptor onnx__model_proto__field_descriptors[11] = { { "ir_version", @@ -1286,10 +1373,23 @@ static const ProtobufCFieldDescriptor onnx__model_proto__field_descriptors[10] = 0, /* flags */ 0,NULL,NULL /* reserved1,reserved2, etc */ }, + { + "functions", + 25, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__ModelProto, n_functions), + offsetof(Onnx__ModelProto, functions), + &onnx__function_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, }; static const unsigned onnx__model_proto__field_indices_by_name[] = { 5, /* field[5] = doc_string */ 3, /* field[3] = domain */ + 10, /* field[10] = functions */ 6, /* field[6] = graph */ 0, /* field[0] = ir_version */ 8, /* field[8] = metadata_props */ @@ -1299,12 +1399,13 @@ static const unsigned onnx__model_proto__field_indices_by_name[] = { 2, /* field[2] = producer_version */ 9, /* field[9] = training_info */ }; -static const ProtobufCIntRange onnx__model_proto__number_ranges[3 + 1] = +static const ProtobufCIntRange onnx__model_proto__number_ranges[4 + 1] = { { 1, 0 }, { 14, 8 }, { 20, 9 }, - { 0, 10 } + { 25, 10 }, + { 0, 11 } }; const ProtobufCMessageDescriptor onnx__model_proto__descriptor = { @@ -1314,10 +1415,10 @@ const ProtobufCMessageDescriptor onnx__model_proto__descriptor = "Onnx__ModelProto", "onnx", sizeof(Onnx__ModelProto), - 10, + 11, onnx__model_proto__field_descriptors, onnx__model_proto__field_indices_by_name, - 3, onnx__model_proto__number_ranges, + 4, onnx__model_proto__number_ranges, (ProtobufCMessageInit) onnx__model_proto__init, NULL,NULL,NULL /* reserved[123] */ }; @@ -2217,7 +2318,96 @@ const ProtobufCMessageDescriptor onnx__type_proto__map__descriptor = (ProtobufCMessageInit) onnx__type_proto__map__init, NULL,NULL,NULL /* reserved[123] */ }; -static const ProtobufCFieldDescriptor onnx__type_proto__field_descriptors[4] = +static const ProtobufCFieldDescriptor onnx__type_proto__optional__field_descriptors[1] = +{ + { + "elem_type", + 1, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_MESSAGE, + 0, /* quantifier_offset */ + offsetof(Onnx__TypeProto__Optional, elem_type), + &onnx__type_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, +}; +static const unsigned onnx__type_proto__optional__field_indices_by_name[] = { + 0, /* field[0] = elem_type */ +}; +static const ProtobufCIntRange onnx__type_proto__optional__number_ranges[1 + 1] = +{ + { 1, 0 }, + { 0, 1 } +}; +const ProtobufCMessageDescriptor onnx__type_proto__optional__descriptor = +{ + PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC, + "onnx.TypeProto.Optional", + "Optional", + "Onnx__TypeProto__Optional", + "onnx", + sizeof(Onnx__TypeProto__Optional), + 1, + onnx__type_proto__optional__field_descriptors, + onnx__type_proto__optional__field_indices_by_name, + 1, onnx__type_proto__optional__number_ranges, + (ProtobufCMessageInit) onnx__type_proto__optional__init, + NULL,NULL,NULL /* reserved[123] */ +}; +static const ProtobufCFieldDescriptor onnx__type_proto__sparse_tensor__field_descriptors[2] = +{ + { + "elem_type", + 1, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_INT32, + 0, /* quantifier_offset */ + offsetof(Onnx__TypeProto__SparseTensor, elem_type), + NULL, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "shape", + 2, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_MESSAGE, + 0, /* quantifier_offset */ + offsetof(Onnx__TypeProto__SparseTensor, shape), + &onnx__tensor_shape_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, +}; +static const unsigned onnx__type_proto__sparse_tensor__field_indices_by_name[] = { + 0, /* field[0] = elem_type */ + 1, /* field[1] = shape */ +}; +static const ProtobufCIntRange onnx__type_proto__sparse_tensor__number_ranges[1 + 1] = +{ + { 1, 0 }, + { 0, 2 } +}; +const ProtobufCMessageDescriptor onnx__type_proto__sparse_tensor__descriptor = +{ + PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC, + "onnx.TypeProto.SparseTensor", + "SparseTensor", + "Onnx__TypeProto__SparseTensor", + "onnx", + sizeof(Onnx__TypeProto__SparseTensor), + 2, + onnx__type_proto__sparse_tensor__field_descriptors, + onnx__type_proto__sparse_tensor__field_indices_by_name, + 1, onnx__type_proto__sparse_tensor__number_ranges, + (ProtobufCMessageInit) onnx__type_proto__sparse_tensor__init, + NULL,NULL,NULL /* reserved[123] */ +}; +static const ProtobufCFieldDescriptor onnx__type_proto__field_descriptors[6] = { { "tensor_type", @@ -2267,18 +2457,45 @@ static const ProtobufCFieldDescriptor onnx__type_proto__field_descriptors[4] = 0, /* flags */ 0,NULL,NULL /* reserved1,reserved2, etc */ }, + { + "sparse_tensor_type", + 8, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__TypeProto, value_case), + offsetof(Onnx__TypeProto, sparse_tensor_type), + &onnx__type_proto__sparse_tensor__descriptor, + NULL, + 0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "optional_type", + 9, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__TypeProto, value_case), + offsetof(Onnx__TypeProto, optional_type), + &onnx__type_proto__optional__descriptor, + NULL, + 0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, }; static const unsigned onnx__type_proto__field_indices_by_name[] = { 3, /* field[3] = denotation */ 2, /* field[2] = map_type */ + 5, /* field[5] = optional_type */ 1, /* field[1] = sequence_type */ + 4, /* field[4] = sparse_tensor_type */ 0, /* field[0] = tensor_type */ }; -static const ProtobufCIntRange onnx__type_proto__number_ranges[2 + 1] = +static const ProtobufCIntRange onnx__type_proto__number_ranges[3 + 1] = { { 1, 0 }, { 4, 1 }, - { 0, 4 } + { 8, 4 }, + { 0, 6 } }; const ProtobufCMessageDescriptor onnx__type_proto__descriptor = { @@ -2288,10 +2505,10 @@ const ProtobufCMessageDescriptor onnx__type_proto__descriptor = "Onnx__TypeProto", "onnx", sizeof(Onnx__TypeProto), - 4, + 6, onnx__type_proto__field_descriptors, onnx__type_proto__field_indices_by_name, - 2, onnx__type_proto__number_ranges, + 3, onnx__type_proto__number_ranges, (ProtobufCMessageInit) onnx__type_proto__init, NULL,NULL,NULL /* reserved[123] */ }; @@ -2346,7 +2563,137 @@ const ProtobufCMessageDescriptor onnx__operator_set_id_proto__descriptor = (ProtobufCMessageInit) onnx__operator_set_id_proto__init, NULL,NULL,NULL /* reserved[123] */ }; -static const ProtobufCEnumValue onnx__version__enum_values_by_number[8] = +static const ProtobufCFieldDescriptor onnx__function_proto__field_descriptors[8] = +{ + { + "name", + 1, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_STRING, + 0, /* quantifier_offset */ + offsetof(Onnx__FunctionProto, name), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "input", + 4, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_STRING, + offsetof(Onnx__FunctionProto, n_input), + offsetof(Onnx__FunctionProto, input), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "output", + 5, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_STRING, + offsetof(Onnx__FunctionProto, n_output), + offsetof(Onnx__FunctionProto, output), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "attribute", + 6, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_STRING, + offsetof(Onnx__FunctionProto, n_attribute), + offsetof(Onnx__FunctionProto, attribute), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "node", + 7, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__FunctionProto, n_node), + offsetof(Onnx__FunctionProto, node), + &onnx__node_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "doc_string", + 8, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_STRING, + 0, /* quantifier_offset */ + offsetof(Onnx__FunctionProto, doc_string), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "opset_import", + 9, + PROTOBUF_C_LABEL_REPEATED, + PROTOBUF_C_TYPE_MESSAGE, + offsetof(Onnx__FunctionProto, n_opset_import), + offsetof(Onnx__FunctionProto, opset_import), + &onnx__operator_set_id_proto__descriptor, + NULL, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, + { + "domain", + 10, + PROTOBUF_C_LABEL_NONE, + PROTOBUF_C_TYPE_STRING, + 0, /* quantifier_offset */ + offsetof(Onnx__FunctionProto, domain), + NULL, + &protobuf_c_empty_string, + 0, /* flags */ + 0,NULL,NULL /* reserved1,reserved2, etc */ + }, +}; +static const unsigned onnx__function_proto__field_indices_by_name[] = { + 3, /* field[3] = attribute */ + 5, /* field[5] = doc_string */ + 7, /* field[7] = domain */ + 1, /* field[1] = input */ + 0, /* field[0] = name */ + 4, /* field[4] = node */ + 6, /* field[6] = opset_import */ + 2, /* field[2] = output */ +}; +static const ProtobufCIntRange onnx__function_proto__number_ranges[2 + 1] = +{ + { 1, 0 }, + { 4, 1 }, + { 0, 8 } +}; +const ProtobufCMessageDescriptor onnx__function_proto__descriptor = +{ + PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC, + "onnx.FunctionProto", + "FunctionProto", + "Onnx__FunctionProto", + "onnx", + sizeof(Onnx__FunctionProto), + 8, + onnx__function_proto__field_descriptors, + onnx__function_proto__field_indices_by_name, + 2, onnx__function_proto__number_ranges, + (ProtobufCMessageInit) onnx__function_proto__init, + NULL,NULL,NULL /* reserved[123] */ +}; +static const ProtobufCEnumValue onnx__version__enum_values_by_number[9] = { { "_START_VERSION", "ONNX__VERSION___START_VERSION", 0 }, { "IR_VERSION_2017_10_10", "ONNX__VERSION__IR_VERSION_2017_10_10", 1 }, @@ -2355,20 +2702,22 @@ static const ProtobufCEnumValue onnx__version__enum_values_by_number[8] = { "IR_VERSION_2019_1_22", "ONNX__VERSION__IR_VERSION_2019_1_22", 4 }, { "IR_VERSION_2019_3_18", "ONNX__VERSION__IR_VERSION_2019_3_18", 5 }, { "IR_VERSION_2019_9_19", "ONNX__VERSION__IR_VERSION_2019_9_19", 6 }, - { "IR_VERSION", "ONNX__VERSION__IR_VERSION", 7 }, + { "IR_VERSION_2020_5_8", "ONNX__VERSION__IR_VERSION_2020_5_8", 7 }, + { "IR_VERSION", "ONNX__VERSION__IR_VERSION", 8 }, }; static const ProtobufCIntRange onnx__version__value_ranges[] = { -{0, 0},{0, 8} +{0, 0},{0, 9} }; -static const ProtobufCEnumValueIndex onnx__version__enum_values_by_name[8] = +static const ProtobufCEnumValueIndex onnx__version__enum_values_by_name[9] = { - { "IR_VERSION", 7 }, + { "IR_VERSION", 8 }, { "IR_VERSION_2017_10_10", 1 }, { "IR_VERSION_2017_10_30", 2 }, { "IR_VERSION_2017_11_3", 3 }, { "IR_VERSION_2019_1_22", 4 }, { "IR_VERSION_2019_3_18", 5 }, { "IR_VERSION_2019_9_19", 6 }, + { "IR_VERSION_2020_5_8", 7 }, { "_START_VERSION", 0 }, }; const ProtobufCEnumDescriptor onnx__version__descriptor = @@ -2378,11 +2727,39 @@ const ProtobufCEnumDescriptor onnx__version__descriptor = "Version", "Onnx__Version", "onnx", - 8, + 9, onnx__version__enum_values_by_number, - 8, + 9, onnx__version__enum_values_by_name, 1, onnx__version__value_ranges, NULL,NULL,NULL,NULL /* reserved[1234] */ }; +static const ProtobufCEnumValue onnx__operator_status__enum_values_by_number[2] = +{ + { "EXPERIMENTAL", "ONNX__OPERATOR_STATUS__EXPERIMENTAL", 0 }, + { "STABLE", "ONNX__OPERATOR_STATUS__STABLE", 1 }, +}; +static const ProtobufCIntRange onnx__operator_status__value_ranges[] = { +{0, 0},{0, 2} +}; +static const ProtobufCEnumValueIndex onnx__operator_status__enum_values_by_name[2] = +{ + { "EXPERIMENTAL", 0 }, + { "STABLE", 1 }, +}; +const ProtobufCEnumDescriptor onnx__operator_status__descriptor = +{ + PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC, + "onnx.OperatorStatus", + "OperatorStatus", + "Onnx__OperatorStatus", + "onnx", + 2, + onnx__operator_status__enum_values_by_number, + 2, + onnx__operator_status__enum_values_by_name, + 1, + onnx__operator_status__value_ranges, + NULL,NULL,NULL,NULL /* reserved[1234] */ +}; diff --git a/src/onnx.proto3.pb-c.h b/src/onnx.proto3.pb-c.h index 7e45e295..59669b78 100644 --- a/src/onnx.proto3.pb-c.h +++ b/src/onnx.proto3.pb-c.h @@ -4,7 +4,7 @@ #ifndef PROTOBUF_C_onnx_2eproto3__INCLUDED #define PROTOBUF_C_onnx_2eproto3__INCLUDED -#include +#include "protobuf-c.h" PROTOBUF_C__BEGIN_DECLS @@ -32,7 +32,10 @@ typedef struct Onnx__TypeProto Onnx__TypeProto; typedef struct Onnx__TypeProto__Tensor Onnx__TypeProto__Tensor; typedef struct Onnx__TypeProto__Sequence Onnx__TypeProto__Sequence; typedef struct Onnx__TypeProto__Map Onnx__TypeProto__Map; +typedef struct Onnx__TypeProto__Optional Onnx__TypeProto__Optional; +typedef struct Onnx__TypeProto__SparseTensor Onnx__TypeProto__SparseTensor; typedef struct Onnx__OperatorSetIdProto Onnx__OperatorSetIdProto; +typedef struct Onnx__FunctionProto Onnx__FunctionProto; /* --- enums --- */ @@ -49,12 +52,14 @@ typedef enum _Onnx__AttributeProto__AttributeType { ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TENSOR = 4, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__GRAPH = 5, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__SPARSE_TENSOR = 11, + ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TYPE_PROTO = 13, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__FLOATS = 6, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__INTS = 7, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__STRINGS = 8, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TENSORS = 9, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__GRAPHS = 10, - ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__SPARSE_TENSORS = 12 + ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__SPARSE_TENSORS = 12, + ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__TYPE_PROTOS = 14 PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE) } Onnx__AttributeProto__AttributeType; typedef enum _Onnx__TensorProto__DataType { @@ -185,7 +190,7 @@ typedef enum _Onnx__Version { */ ONNX__VERSION__IR_VERSION_2019_9_19 = 6, /* - * IR VERSION 7 published on + * IR VERSION 7 published on May 8, 2020 * - Add support to allow function body graph to rely on multiple external opreator sets. * - Add a list to promote inference graph's initializers to global and * mutable variables. Global variables are visible in all graphs of the @@ -195,9 +200,25 @@ typedef enum _Onnx__Version { * can modify the values of mutable variables. * - Implicitly add inference graph into each TrainingInfoProto's algorithm. */ - ONNX__VERSION__IR_VERSION = 7 + ONNX__VERSION__IR_VERSION_2020_5_8 = 7, + /* + * IR VERSION 8 published on + * Introduce TypeProto.SparseTensor + * Introduce TypeProto.Optional + * Added a list of FunctionProtos local to the model + * Deprecated since_version and operator status from FunctionProto + */ + ONNX__VERSION__IR_VERSION = 8 PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(ONNX__VERSION) } Onnx__Version; +/* + * Operator/function status. + */ +typedef enum _Onnx__OperatorStatus { + ONNX__OPERATOR_STATUS__EXPERIMENTAL = 0, + ONNX__OPERATOR_STATUS__STABLE = 1 + PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(ONNX__OPERATOR_STATUS) +} Onnx__OperatorStatus; /* --- messages --- */ @@ -268,6 +289,14 @@ struct Onnx__AttributeProto * sparse tensor value */ Onnx__SparseTensorProto *sparse_tensor; + /* + * Do not use field below, it's deprecated. + * optional ValueProto v = 12; // value - subsumes everything but graph + */ + /* + * type proto + */ + Onnx__TypeProto *tp; /* * list of floats */ @@ -298,10 +327,15 @@ struct Onnx__AttributeProto */ size_t n_sparse_tensors; Onnx__SparseTensorProto **sparse_tensors; + /* + * list of type protos + */ + size_t n_type_protos; + Onnx__TypeProto **type_protos; }; #define ONNX__ATTRIBUTE_PROTO__INIT \ { PROTOBUF_C_MESSAGE_INIT (&onnx__attribute_proto__descriptor) \ - , (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__UNDEFINED, 0, 0, {0,NULL}, NULL, NULL, NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL } + , (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, ONNX__ATTRIBUTE_PROTO__ATTRIBUTE_TYPE__UNDEFINED, 0, 0, {0,NULL}, NULL, NULL, NULL, NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL, 0,NULL } /* @@ -582,10 +616,28 @@ struct Onnx__ModelProto */ size_t n_training_info; Onnx__TrainingInfoProto **training_info; + /* + * A list of function protos local to the model. + * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain". + * In case of any conflicts the behavior (whether the model local functions are given higher priority, + * or standard opserator sets are given higher priotity or this is treated as error) is defined by + * the runtimes. + * + * The operator sets imported by FunctionProto should be compatible with the ones + * imported by ModelProto and other model local FunctionProtos. + * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto + * or by 2 FunctionProtos then versions for the operator set may be different but, + * the operator schema returned for op_type, domain, version combination + * for both the versions should be same for every node in the function body. + * One FunctionProto can reference other FunctionProto in the model, however, recursive reference + * is not allowed. + */ + size_t n_functions; + Onnx__FunctionProto **functions; }; #define ONNX__MODEL_PROTO__INIT \ { PROTOBUF_C_MESSAGE_INIT (&onnx__model_proto__descriptor) \ - , 0, 0,NULL, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, 0, (char *)protobuf_c_empty_string, NULL, 0,NULL, 0,NULL } + , 0, 0,NULL, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, (char *)protobuf_c_empty_string, 0, (char *)protobuf_c_empty_string, NULL, 0,NULL, 0,NULL, 0,NULL } /* @@ -875,7 +927,7 @@ struct Onnx__TensorShapeProto__Dimension * Standard denotation can optionally be used to denote tensor * dimensions with standard semantic descriptions to ensure * that operations are applied to the correct axis of a tensor. - * Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition + * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition * for pre-defined dimension denotations. */ char *denotation; @@ -964,11 +1016,47 @@ struct Onnx__TypeProto__Map , 0, NULL } +/* + * wrapper for Tensor, Sequence, or Map + */ +struct Onnx__TypeProto__Optional +{ + ProtobufCMessage base; + /* + * The type and optional shape of the element wrapped. + * This field MUST be present for this version of the IR. + * Possible values correspond to OptionalProto.DataType enum + */ + Onnx__TypeProto *elem_type; +}; +#define ONNX__TYPE_PROTO__OPTIONAL__INIT \ + { PROTOBUF_C_MESSAGE_INIT (&onnx__type_proto__optional__descriptor) \ + , NULL } + + +struct Onnx__TypeProto__SparseTensor +{ + ProtobufCMessage base; + /* + * This field MUST NOT have the value of UNDEFINED + * This field MUST have a valid TensorProto.DataType value + * This field MUST be present for this version of the IR. + */ + int32_t elem_type; + Onnx__TensorShapeProto *shape; +}; +#define ONNX__TYPE_PROTO__SPARSE_TENSOR__INIT \ + { PROTOBUF_C_MESSAGE_INIT (&onnx__type_proto__sparse_tensor__descriptor) \ + , 0, NULL } + + typedef enum { ONNX__TYPE_PROTO__VALUE__NOT_SET = 0, ONNX__TYPE_PROTO__VALUE_TENSOR_TYPE = 1, ONNX__TYPE_PROTO__VALUE_SEQUENCE_TYPE = 4, - ONNX__TYPE_PROTO__VALUE_MAP_TYPE = 5 + ONNX__TYPE_PROTO__VALUE_MAP_TYPE = 5, + ONNX__TYPE_PROTO__VALUE_OPTIONAL_TYPE = 9, + ONNX__TYPE_PROTO__VALUE_SPARSE_TENSOR_TYPE = 8 PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(ONNX__TYPE_PROTO__VALUE__CASE) } Onnx__TypeProto__ValueCase; @@ -982,7 +1070,7 @@ struct Onnx__TypeProto /* * An optional denotation can be used to denote the whole * type with a standard semantic description as to what is - * stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition + * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition * for pre-defined type denotations. */ char *denotation; @@ -1000,6 +1088,14 @@ struct Onnx__TypeProto * The type of a map. */ Onnx__TypeProto__Map *map_type; + /* + * The type of an optional. + */ + Onnx__TypeProto__Optional *optional_type; + /* + * Type of the sparse tensor + */ + Onnx__TypeProto__SparseTensor *sparse_tensor_type; }; }; #define ONNX__TYPE_PROTO__INIT \ @@ -1032,6 +1128,49 @@ struct Onnx__OperatorSetIdProto , (char *)protobuf_c_empty_string, 0 } +struct Onnx__FunctionProto +{ + ProtobufCMessage base; + /* + * The name of the function, similar usage of op_type in OperatorProto. + * Combined with FunctionProto.domain, this forms the unique identity of + * the FunctionProto. + */ + char *name; + /* + * The inputs and outputs of the function. + */ + size_t n_input; + char **input; + size_t n_output; + char **output; + /* + * The attributes of the function. + */ + size_t n_attribute; + char **attribute; + /* + * The nodes in the function. + */ + size_t n_node; + Onnx__NodeProto **node; + /* + * A human-readable documentation for this function. Markdown is allowed. + */ + char *doc_string; + size_t n_opset_import; + Onnx__OperatorSetIdProto **opset_import; + /* + * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of + * the FunctionProto. + */ + char *domain; +}; +#define ONNX__FUNCTION_PROTO__INIT \ + { PROTOBUF_C_MESSAGE_INIT (&onnx__function_proto__descriptor) \ + , (char *)protobuf_c_empty_string, 0,NULL, 0,NULL, 0,NULL, 0,NULL, (char *)protobuf_c_empty_string, 0,NULL, (char *)protobuf_c_empty_string } + + /* Onnx__AttributeProto methods */ void onnx__attribute_proto__init (Onnx__AttributeProto *message); @@ -1256,6 +1395,12 @@ void onnx__type_proto__sequence__init /* Onnx__TypeProto__Map methods */ void onnx__type_proto__map__init (Onnx__TypeProto__Map *message); +/* Onnx__TypeProto__Optional methods */ +void onnx__type_proto__optional__init + (Onnx__TypeProto__Optional *message); +/* Onnx__TypeProto__SparseTensor methods */ +void onnx__type_proto__sparse_tensor__init + (Onnx__TypeProto__SparseTensor *message); /* Onnx__TypeProto methods */ void onnx__type_proto__init (Onnx__TypeProto *message); @@ -1294,6 +1439,25 @@ Onnx__OperatorSetIdProto * void onnx__operator_set_id_proto__free_unpacked (Onnx__OperatorSetIdProto *message, ProtobufCAllocator *allocator); +/* Onnx__FunctionProto methods */ +void onnx__function_proto__init + (Onnx__FunctionProto *message); +size_t onnx__function_proto__get_packed_size + (const Onnx__FunctionProto *message); +size_t onnx__function_proto__pack + (const Onnx__FunctionProto *message, + uint8_t *out); +size_t onnx__function_proto__pack_to_buffer + (const Onnx__FunctionProto *message, + ProtobufCBuffer *buffer); +Onnx__FunctionProto * + onnx__function_proto__unpack + (ProtobufCAllocator *allocator, + size_t len, + const uint8_t *data); +void onnx__function_proto__free_unpacked + (Onnx__FunctionProto *message, + ProtobufCAllocator *allocator); /* --- per-message closures --- */ typedef void (*Onnx__AttributeProto_Closure) @@ -1344,12 +1508,21 @@ typedef void (*Onnx__TypeProto__Sequence_Closure) typedef void (*Onnx__TypeProto__Map_Closure) (const Onnx__TypeProto__Map *message, void *closure_data); +typedef void (*Onnx__TypeProto__Optional_Closure) + (const Onnx__TypeProto__Optional *message, + void *closure_data); +typedef void (*Onnx__TypeProto__SparseTensor_Closure) + (const Onnx__TypeProto__SparseTensor *message, + void *closure_data); typedef void (*Onnx__TypeProto_Closure) (const Onnx__TypeProto *message, void *closure_data); typedef void (*Onnx__OperatorSetIdProto_Closure) (const Onnx__OperatorSetIdProto *message, void *closure_data); +typedef void (*Onnx__FunctionProto_Closure) + (const Onnx__FunctionProto *message, + void *closure_data); /* --- services --- */ @@ -1357,6 +1530,7 @@ typedef void (*Onnx__OperatorSetIdProto_Closure) /* --- descriptors --- */ extern const ProtobufCEnumDescriptor onnx__version__descriptor; +extern const ProtobufCEnumDescriptor onnx__operator_status__descriptor; extern const ProtobufCMessageDescriptor onnx__attribute_proto__descriptor; extern const ProtobufCEnumDescriptor onnx__attribute_proto__attribute_type__descriptor; extern const ProtobufCMessageDescriptor onnx__value_info_proto__descriptor; @@ -1377,7 +1551,10 @@ extern const ProtobufCMessageDescriptor onnx__type_proto__descriptor; extern const ProtobufCMessageDescriptor onnx__type_proto__tensor__descriptor; extern const ProtobufCMessageDescriptor onnx__type_proto__sequence__descriptor; extern const ProtobufCMessageDescriptor onnx__type_proto__map__descriptor; +extern const ProtobufCMessageDescriptor onnx__type_proto__optional__descriptor; +extern const ProtobufCMessageDescriptor onnx__type_proto__sparse_tensor__descriptor; extern const ProtobufCMessageDescriptor onnx__operator_set_id_proto__descriptor; +extern const ProtobufCMessageDescriptor onnx__function_proto__descriptor; PROTOBUF_C__END_DECLS diff --git a/src/onnxconf.h b/src/onnxconf.h index f3636dc2..457cb694 100644 --- a/src/onnxconf.h +++ b/src/onnxconf.h @@ -10,11 +10,11 @@ extern "C" { #include #include #include -#include + #include #include -#include -#include +#include "list.h" +#include "hmap.h" /* * Macro @@ -26,7 +26,9 @@ extern "C" { /* * little or big endian */ -#define ONNX_LITTLE_ENDIAN (1) +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ + #define ONNX_LITTLE_ENDIAN (1) +#endif static inline uint16_t __swab16(uint16_t x) { diff --git a/src/protobuf-c.h b/src/protobuf-c.h index b633722e..3d16ad25 100644 --- a/src/protobuf-c.h +++ b/src/protobuf-c.h @@ -200,6 +200,7 @@ size_t foo__bar__baz_bah__pack_to_buffer #include #include #include +#include "onnxconf.h" #ifdef __cplusplus # define PROTOBUF_C__BEGIN_DECLS extern "C" {