-
Notifications
You must be signed in to change notification settings - Fork 1
[docs] Add autoround doc #10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
baad120
e73b98d
03b420e
37a03ec
f993f80
374d991
73fdcf1
ead09b3
9eedf88
6e9623b
87d7162
1a76018
5e7df30
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
| @@ -0,0 +1,141 @@ | ||||||
| # `AutoRound` Quantization | ||||||
|
|
||||||
| `llm-compressor` supports [AutoRound](https://aclanthology.org/2024.findings-emnlp.662.pdf), an advanced quantization technique that delivers **high-accuracy**, **low-bit quantization**. The quantized results are fully compatible with `compressed-tensors` and can be served directly with vLLM. | ||||||
|
|
||||||
| AutoRound introduces three trainable parameters (V, α, and β) to optimize rounding values and clipping ranges during quantization. The method processes each decoder layer sequentially, using block-wise output reconstruction error as the training objective to fine-tune these parameters. This approach combines the efficiency of post-training quantization with the adaptability of parameter tuning, delivering robust compression for large language models while maintaining strong performance. | ||||||
|
|
||||||
| ## Installation | ||||||
|
|
||||||
| To get started, install: | ||||||
|
|
||||||
| ```bash | ||||||
| git clone https://github.com/vllm-project/llm-compressor.git | ||||||
| cd llm-compressor | ||||||
| pip install -e . | ||||||
| ``` | ||||||
|
|
||||||
| ## Quickstart | ||||||
|
|
||||||
| The example includes an end-to-end script for applying the AutoRound quantization algorithm. | ||||||
|
|
||||||
| ```bash | ||||||
| python3 llama3_example.py | ||||||
| ``` | ||||||
|
|
||||||
| The resulting model `Meta-Llama-3-8B-Instruct-W4A16-G128-AutoRound` is ready to be loaded into vLLM. | ||||||
|
|
||||||
| ## Code Walkthrough | ||||||
|
|
||||||
| Now, we will step through the code in the example. There are four steps: | ||||||
| 1) Load model | ||||||
| 2) Prepare calibration data | ||||||
| 3) Apply quantization | ||||||
| 4) Evaluate accuracy in vLLM | ||||||
|
|
||||||
| ### 1) Load Model | ||||||
|
|
||||||
| Load the model using `AutoModelForCausalLM` for handling quantized saving and loading. | ||||||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This sentence could be slightly misleading.
Suggested change
|
||||||
|
|
||||||
| ```python | ||||||
| from transformers import AutoTokenizer, AutoModelForCausalLM | ||||||
|
|
||||||
| MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||||||
| model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto") | ||||||
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||||||
yiliu30 marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
| ``` | ||||||
|
|
||||||
| ### 2) Prepare Calibration Data | ||||||
|
|
||||||
| When quantizing model weights with AutoRound, you’ll need a small set of sample data to run the algorithm. By default, we are using [NeelNanda/pile-10k](https://huggingface.co/datasets/NeelNanda/pile-10k) as our calibration dataset. | ||||||
| Recommended starting points: | ||||||
| - 128 samples — typically sufficient for stable calibration (increase if accuracy degrades). | ||||||
| - 2048 sequence length — a good baseline for most LLMs. | ||||||
| - 200 tuning steps — usually enough to converge (increase if accuracy drops). | ||||||
|
|
||||||
| ```python | ||||||
| # Select calibration dataset. | ||||||
| from auto_round.calib_dataset import get_dataset | ||||||
|
|
||||||
| NUM_CALIBRATION_SAMPLES = 128 | ||||||
| MAX_SEQUENCE_LENGTH = 2048 | ||||||
|
|
||||||
| # Get aligned calibration dataset. | ||||||
| ds = get_dataset( | ||||||
| tokenizer=tokenizer, | ||||||
| seqlen=MAX_SEQUENCE_LENGTH, | ||||||
| nsamples=NUM_CALIBRATION_SAMPLES, | ||||||
| ) | ||||||
| ``` | ||||||
|
|
||||||
| ### 3) Apply Quantization | ||||||
|
|
||||||
| With the dataset ready, we will now apply AutoRound quantization to the model. | ||||||
|
|
||||||
| ```python | ||||||
| from llmcompressor import oneshot | ||||||
| from llmcompressor.modifiers.autoround import AutoRoundModifier | ||||||
|
|
||||||
| # Configure the quantization algorithm to run. | ||||||
| recipe = AutoRoundModifier( | ||||||
| targets="Linear", scheme="W4A16", ignore=["lm_head"], iters=200 | ||||||
| ) | ||||||
|
|
||||||
| # Apply quantization. | ||||||
| oneshot( | ||||||
| model=model, | ||||||
| dataset=ds, | ||||||
| recipe=recipe, | ||||||
| max_seq_length=MAX_SEQUENCE_LENGTH, | ||||||
| num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||||||
| # disable shuffling to get slightly better mmlu score | ||||||
| shuffle_calibration_samples=False, | ||||||
| ) | ||||||
|
|
||||||
|
|
||||||
| # Save to disk compressed. | ||||||
| SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-W4A16-G128-AutoRound" | ||||||
| model.save_pretrained(SAVE_DIR, save_compressed=True) | ||||||
| tokenizer.save_pretrained(SAVE_DIR) | ||||||
| ``` | ||||||
|
|
||||||
| We have successfully created an `int4` model! | ||||||
|
|
||||||
| ### 4) Evaluate Accuracy | ||||||
|
|
||||||
| With the model created, we can now load and run in vLLM (after installing). | ||||||
|
|
||||||
| ```python | ||||||
| from vllm import LLM | ||||||
| model = LLM("./Meta-Llama-3-8B-Instruct-W4A16-G128-AutoRound") | ||||||
| ``` | ||||||
|
|
||||||
| We can evaluate accuracy with `lm_eval` (`pip install lm-eval==0.4.9.1`): | ||||||
| > Note: quantized models can be sensitive to the presence of the `bos` token. `lm_eval` does not add a `bos` token by default, so make sure to include the `add_bos_token=True` argument when running your evaluations. | ||||||
|
|
||||||
| Run the following to test accuracy on GSM-8K: | ||||||
|
|
||||||
| ```bash | ||||||
| lm_eval --model vllm \ | ||||||
| --model_args pretrained="./Meta-Llama-3-8B-Instruct-W4A16-G128-AutoRound",add_bos_token=true \ | ||||||
| --tasks gsm8k \ | ||||||
| --num_fewshot 5 \ | ||||||
| --limit 1000 \ | ||||||
| --batch_size 'auto' | ||||||
| ``` | ||||||
|
|
||||||
| We can see the resulting scores look good! | ||||||
|
|
||||||
| ```bash | ||||||
| | Tasks | Version | Filter | n-shot | Metric | | Value | | Stderr | | ||||||
| | ----- | ------: | ---------------- | -----: | ----------- | --- | ----: | --- | -----: | | ||||||
| | gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.737 | ± | 0.0139 | | ||||||
| | | | strict-match | 5 | exact_match | ↑ | 0.736 | ± | 0.0139 | | ||||||
| ``` | ||||||
| > Note: quantized model accuracy may vary slightly due to nondeterminism. | ||||||
|
|
||||||
| ### Known Issues | ||||||
| Currently, `llm-compressor` supports applying AutoRound only on the `wNa16` quantization scheme. Support for additional schemes is planned. You can follow progress in the [RFC](https://github.com/vllm-project/llm-compressor/issues/1968). | ||||||
yiliu30 marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
|
|
||||||
| ### Questions or Feature Request? | ||||||
|
|
||||||
| Please open up an issue on [vllm-project/llm-compressor](https://github.com/vllm-project/llm-compressor) or [intel/auto-round](https://github.com/intel/auto-round). | ||||||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The
Quickstartcommand is a bit ambiguous. After following theInstallationsteps, the user will be in the root of the repository. To run the example script, they need to provide the path to it. This change makes the command explicit and runnable from the repository root, which is more user-friendly.