Skip to content

Solutions completed #17

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 144 additions & 4 deletions notebook/problems.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,111 @@
"execution_count": 1,
"id": "34720ab6",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normal vector: [ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696\n",
" 1.57921282 0.76743473 -0.46947439 0.54256004 -0.46341769 -0.46572975\n",
" 0.24196227 -1.91328024 -1.72491783 -0.56228753 -1.01283112 0.31424733\n",
" -0.90802408 -1.4123037 1.46564877 -0.2257763 0.0675282 -1.42474819\n",
" -0.54438272 0.11092259 -1.15099358 0.37569802 -0.60063869 -0.29169375\n",
" -0.60170661 1.85227818 -0.01349722 -1.05771093 0.82254491 -1.22084365\n",
" 0.2088636 -1.95967012 -1.32818605 0.19686124 0.73846658 0.17136828\n",
" -0.11564828 -0.3011037 -1.47852199 -0.71984421 -0.46063877 1.05712223\n",
" 0.34361829 -1.76304016 0.32408397 -0.38508228 -0.676922 0.61167629\n",
" 1.03099952 0.93128012 -0.83921752 -0.30921238 0.33126343 0.97554513\n",
" -0.47917424 -0.18565898 -1.10633497 -1.19620662 0.81252582 1.35624003\n",
" -0.07201012 1.0035329 0.36163603 -0.64511975 0.36139561 1.53803657\n",
" -0.03582604 1.56464366 -2.6197451 0.8219025 0.08704707 -0.29900735\n",
" 0.09176078 -1.98756891 -0.21967189 0.35711257 1.47789404 -0.51827022\n",
" -0.8084936 -0.50175704 0.91540212 0.32875111 -0.5297602 0.51326743\n",
" 0.09707755 0.96864499 -0.70205309 -0.32766215 -0.39210815 -1.46351495\n",
" 0.29612028 0.26105527 0.00511346 -0.23458713]\n",
"Chi-square vector: [ 0.4168513 1.53749288 2.0019707 3.31954478 2.93509884 2.17617828\n",
" 0.15830407 2.27652419 2.46587889 12.72456265 1.94196651 3.04725102\n",
" 5.77516859 4.36378602 6.86491387 0.42618426 0.78098785 1.3113313\n",
" 0.33084683 2.48460231 0.85740894 7.53845363 1.01734997 1.7044591\n",
" 4.56886089 0.55649438 0.29858042 2.75534614 2.9409741 4.4625349\n",
" 3.65222252 3.03548985 1.15103525 2.87187902 3.02542952 1.10535719\n",
" 9.13003056 3.51390358 0.79761542 4.48007115 5.09450961 3.3434575\n",
" 1.84236463 1.05445618 2.17070629 3.15061854 2.36153348 7.09243827\n",
" 3.96269904 0.92828493 0.70025868 3.53848141 1.8831237 4.24057767\n",
" 3.51221427 2.17951444 0.94044813 0.35233451 2.82705909 0.54422803\n",
" 0.89743356 2.68142092 2.4613509 0.63275656 5.54211583 5.43039306\n",
" 3.63214678 3.62852305 3.63218282 5.06050325 4.04232775 1.03035801\n",
" 1.85822454 11.7557897 0.17754328 1.45511551 5.56483363 1.10410752\n",
" 4.1308596 2.43317078 1.18979801 2.75974204 1.00588199 2.09414701\n",
" 3.60307013 4.7477682 1.450369 1.18741582 0.531925 4.9308192\n",
" 10.57550712 5.34984734 6.2796709 1.11415225 3.42940531 4.43865013\n",
" 0.74626305 0.13247338 0.50086102 2.0667793 ]\n",
"Normal mean: -0.10384651739409385\n",
"Chi mean: 2.9380795335328225\n",
"Normal median: -0.1269562917797126\n",
"Chi median: 2.4636148965577283\n",
"Normal mode: 0.4967141530112327\n",
"Chi mode: 0.4168513022813494\n",
"Normal range: 4.472023288598682\n",
"Normal chi: 12.592089274962756\n",
"Normal variance: 0.82476989363016 and std: 0.9081684280078007\n",
"Chi variance: 5.87576054587392 and std: 2.4239968122656266\n",
"Normal skewness: -0.17526772024433726\n",
"Chi skewness: 1.6683703423622345\n",
"Normal kurtosis: -0.1554047077420817\n",
"Chi kurtosis: 3.620577909892315\n"
]
}
],
"source": [
"# TODO"
"import numpy as np\n",
"import statistics as stats\n",
"from scipy.stats import skew\n",
"from scipy.stats import kurtosis\n",
"import math\n",
"import sys\n",
"\n",
"np.random.seed(42)\n",
"\n",
"normal = np.random.normal(size = 100)\n",
"chi = np.random.chisquare(3, 100)\n",
"\n",
"print(f\"Normal vector: {normal}\")\n",
"print(f\"Chi-square vector: {chi}\")\n",
"\n",
"print(f\"Normal mean: {stats.mean(normal)}\")\n",
"print(f\"Chi mean: {stats.mean(chi)}\")\n",
"\n",
"print(f\"Normal median: {stats.median(normal)}\")\n",
"print(f\"Chi median: {stats.median(chi)}\")\n",
"\n",
"print(f\"Normal mode: {stats.mode(normal)}\")\n",
"print(f\"Chi mode: {stats.mode(chi)}\")\n",
"\n",
"range_normal = max(normal) - min(normal)\n",
"range_chi = max(chi) - min(chi)\n",
"print(f\"Normal range: {range_normal}\")\n",
"print(f\"Normal chi: {range_chi}\")\n",
"\n",
"var_normal = stats.variance(normal)\n",
"std_normal = stats.stdev(normal)\n",
"var_chi = stats.variance(chi)\n",
"std_chi = stats.stdev(chi)\n",
"\n",
"print(f\"Normal variance: {var_normal} and std: {std_normal}\")\n",
"print(f\"Chi variance: {var_chi} and std: {std_chi}\")\n",
"\n",
"skew_normal = skew(normal)\n",
"skew_chi = skew(chi)\n",
"\n",
"print(f\"Normal skewness: {skew_normal}\")\n",
"print(f\"Chi skewness: {skew_chi}\")\n",
"\n",
"kurt_normal = kurtosis(normal)\n",
"kurt_chi = kurtosis(chi)\n",
"\n",
"print(f\"Normal kurtosis: {kurt_normal}\")\n",
"print(f\"Chi kurtosis: {kurt_chi}\")"
]
},
{
Expand All @@ -57,9 +159,47 @@
"execution_count": 2,
"id": "d590308e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample Data: [4, 2, 5, 8, 6]\n",
"Standard Deviation: 2.23606797749979\n"
]
}
],
"source": [
"# TODO"
"def standev(data):\n",
" n = len(data)\n",
"\n",
" if (n <= 1):\n",
" return 0.0\n",
"\n",
" mean, sd = avg_calc(data), 0.0\n",
"\n",
" for d in data:\n",
" sd += (float(d) - mean) ** 2\n",
" sd = math.sqrt(sd / float(n - 1))\n",
"\n",
" return sd\n",
"\n",
"def avg_calc(data):\n",
" n, mean = len(data), 0.0\n",
"\n",
" if (n <= 1):\n",
" return data[0]\n",
"\n",
" for d in data:\n",
" mean = mean + float(d)\n",
"\n",
" mean = mean / float(n)\n",
" return mean\n",
"\n",
"\n",
"data = [4, 2, 5, 8, 6]\n",
"print(f\"Sample Data: {data}\")\n",
"print(f\"Standard Deviation: {standev(data)}\")"
]
}
],
Expand Down