Skip to content

Ejercicio de estadistica resuelto #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
236 changes: 230 additions & 6 deletions notebook/problems.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,213 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "34720ab6",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vector normal: [-0.13981665 3.27642772 0.41495447 -0.94947911 0.01230883 -1.59841484\n",
" 0.14503588 -0.18295834 -1.1813453 0.13567271 1.2245349 0.82177615\n",
" -0.35559264 0.16886222 -0.7799625 1.03570004 -0.80818192 -0.40033731\n",
" -1.41779659 0.40061763 -0.49412013 -0.47741689 -0.57009159 0.14137868\n",
" 0.00633298 -0.16271211 -0.83820593 -1.01545907 -1.62566956 -0.06404521\n",
" 0.38777274 0.21552142 -0.6303858 -0.58360702 1.13908369 -0.44960161\n",
" -0.29557928 -0.17653418 0.21395149 -0.76213997 -1.02575906 -0.81069971\n",
" -2.11160462 -0.61151094 0.08388871 0.05529554 -0.09173184 -0.06682591\n",
" 0.6788379 2.06377681 0.57038307 0.74668228 -0.74707044 0.8853769\n",
" -2.00151533 0.96468643 -2.09877542 -0.13495309 0.17394017 1.8438733\n",
" -0.63025428 -0.45991567 -0.59596786 0.83649136 0.0980591 0.83771535\n",
" 0.57932802 0.94648941 -1.706124 -1.10103427 2.40741733 -2.73921832\n",
" -0.70693843 -0.29019909 0.14051028 -0.46095132 0.9631452 0.22349802\n",
" 1.41602007 0.09541905 -0.73212559 -0.65620409 1.19966057 0.97902427\n",
" -0.14403832 -0.29102366 0.63833587 -0.63823059 -0.99211308 -0.43178822\n",
" -0.52174175 1.10765967 -0.39172841 -0.86042976 0.7612823 -0.62582515\n",
" -1.59349533 -0.73977405 1.0780916 0.58353696]\n",
"Vector chi: [ 2.79776252 15.4188415 0.75161486 0.31586758 1.2367305 3.07778272\n",
" 3.60184995 2.30326312 2.1318715 1.48597231 3.81263391 3.33445484\n",
" 0.9749434 3.3892638 1.46390446 0.75605669 4.00811586 1.78076159\n",
" 3.69396446 1.39294758 6.10014106 5.36188253 2.70758433 8.10727245\n",
" 7.37455107 0.70801959 1.92914718 3.37949774 1.96363066 1.11308871\n",
" 3.30499427 5.01814896 7.966394 3.33836864 3.5035974 4.77611806\n",
" 2.82355169 2.64530565 6.21148077 6.55519548 1.48031313 0.9201735\n",
" 2.67083777 4.90577331 6.08431492 3.48696815 6.83064601 2.81134485\n",
" 0.74830845 2.14202517 2.00581818 2.02545146 6.89109992 1.47392385\n",
" 1.23229621 7.07083325 4.27351681 0.54460691 0.04985409 1.15398384\n",
" 6.65606617 1.93676989 3.13019177 4.71223957 0.22640199 5.1696933\n",
" 2.46104687 2.75671682 3.53390691 3.07540574 2.9381396 1.91524673\n",
" 0.6480549 2.64941911 0.57675636 0.93993087 0.7316045 3.38670708\n",
" 3.37209597 1.17183639 1.9162541 4.12120361 1.15100382 0.75660436\n",
" 0.70507591 3.25794101 6.05599761 6.52134932 3.75157451 0.87006518\n",
" 0.86984476 1.03175059 5.32122735 4.30845073 1.25308723 1.89272559\n",
" 4.35480243 0.72047634 4.07132952 1.45918759]\n"
]
}
],
"source": [
"# TODO"
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"normal = np.random.normal(size=100)\n",
"\n",
"chi_valor = np.random.chisquare(3, 100)\n",
"\n",
"print(f'Vector normal: {normal}')\n",
"print(f'Vector chi: {chi_valor}')\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e8eccb84",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Media de valor normal: -0.10270664081657574\n",
"Media de valor chi: 3.0779684523334394\n"
]
}
],
"source": [
"import statistics as stats\n",
"\n",
"#Calculamos la media con la libreria stats\n",
"\n",
"print(f'Media de valor normal: {stats.mean(normal)}')\n",
"print(f'Media de valor chi: {stats.mean(chi_valor)}')\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a198af3f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Media de valor normal: -0.15337521734352497\n",
"Media de valor chi: 2.7321505766767054\n"
]
}
],
"source": [
"#Calculamos la mediana con la libreria stats\n",
"\n",
"print(f'Mediana de valor normal: {stats.median(normal)}')\n",
"print(f'Mediana de valor chi: {stats.median(chi_valor)}')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "30310167",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Media de valor normal: -0.10270664081657574\n",
"Media de valor chi: 3.0779684523334394\n"
]
}
],
"source": [
"#Calculamos la moda con la libreria stats\n",
"\n",
"print(f'Moda del valor normal: {stats.mean(normal)}')\n",
"print(f'Moda del valor chi: {stats.mean(chi_valor)}')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e6011c0f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Varianza del valor normal: 0.9569786967163646\n",
"Desviacion valor normal: 0.9782528797383448\n",
"Varianza del valor chi: 5.527016223019786\n",
"Desviacion valor chi: 2.350960702142804\n"
]
}
],
"source": [
"#Calculamos la varianza y la desviacion con la libreria stats\n",
"\n",
"print(f'Varianza del valor normal: {stats.variance(normal)}')\n",
"print(f'Desviacion valor normal: {stats.stdev(normal)}')\n",
"\n",
"print(f'Varianza del valor chi: {stats.variance(chi_valor)}')\n",
"print(f'Desviacion valor chi: {stats.stdev(chi_valor)}')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "26a24398",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cuurtosis del valor normal: 0.33655658137222344\n",
"Curtosis valor chi: 1.8052937930069857\n"
]
}
],
"source": [
"from scipy.stats import kurtosis\n",
"\n",
"#Dentro de la libreria scipy.stats importamos la funcion skew, que nos devolvera la curtosis\n",
"#La curtosis mide la concentracion de valores fuera de la zona central.\n",
"\n",
"curtosis_nomral = kurtosis(normal)\n",
"curtosis_chi = kurtosis(chi_valor)\n",
"\n",
"print(f'Cuurtosis del valor normal: {curtosis_nomral}')\n",
"print(f'Curtosis valor chi: {curtosis_chi}')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "c39b3ec9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Asimetria del valor normal: 0.33655658137222344\n",
"Asimetria valor chi: 1.8052937930069857\n"
]
}
],
"source": [
"from scipy.stats import skew\n",
"\n",
"#Dentro de la libreria scipy.stats importamos la funcion skew, que nos devolvera la asimetria\n",
"#La asimetria mide la concentracion de valores en los laterales de la media, diciendonos si son simetricos los datos.\n",
"\n",
"curtosis_nomral = skew(normal)\n",
"curtosis_chi = skew(chi_valor)\n",
"\n",
"print(f'Asimetria del valor normal: {curtosis_nomral}')\n",
"print(f'Asimetria valor chi: {curtosis_chi}')"
]
},
{
Expand All @@ -54,12 +255,35 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 30,
"id": "d590308e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"La desviación estandar para los valores introducidos es de: 2.0\n"
]
}
],
"source": [
"# TODO"
"import math\n",
"\n",
"def standar_deviation(valores):\n",
"\n",
" media = sum(valores)/len(valores)\n",
"\n",
" desviacion_suma = 0\n",
"\n",
" for n in valores:\n",
" desviacion_suma += (float(n) - media)**2\n",
"\n",
" desviacion_final = math.sqrt(desviacion_suma/len(valores))\n",
"\n",
" return desviacion_final\n",
"\n",
"print(f'La desviación estandar para los valores introducidos es de: {standar_deviation([4, 2, 5, 8, 6])}')\n"
]
}
],
Expand Down
7 changes: 2 additions & 5 deletions notebook/solutions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -346,9 +346,6 @@
],
"source": [
"import math\n",
"import sys\n",
"\n",
"# Define the standard deviation function\n",
"\n",
"def sd_calc(data):\n",
" n = len(data)\n",
Expand Down Expand Up @@ -378,8 +375,8 @@
"\n",
"\n",
"data = [4, 2, 5, 8, 6]\n",
"print(f\"Sample Data: {data}\")\n",
"print(f\"Standard Deviation: {sd_calc(data)}\")"
"print(f\"Datos simple: {data}\")\n",
"print(f\"Derivacion estandar: {sd_calc(data)}\")"
]
}
],
Expand Down