This project detects fraudulent bank accounts using machine learning. It leverages XGBoost, SMOTE for class imbalance, and includes preprocessing, evaluation, and visualization steps.
- Data cleaning and preprocessing
- Feature scaling and encoding
- SMOTE for handling class imbalance
- XGBoost classifier
- ROC-AUC evaluation
- Modular Python code
main.py
: Runs the ML pipeline and evaluates the modelpreprocessing.py
: Data loading and preprocessing logicvisualization.py
: Fraud distribution plotsrequirements.txt
: Project dependencies
pip install -r requirements.txt
python main.py
Habil Huseynov – M.S. in Applied Machine Learning @ University of Maryland