Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions Create-Argilla-Dataset.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "476ee822-fada-4678-99de-e79aeb45ac08",
"metadata": {},
"outputs": [],
"source": [
"!pip3 install datasets argilla sentence-transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8e76e0e-5355-4d19-b602-1953dc2d4e5a",
"metadata": {},
"outputs": [],
"source": [
"import argilla as rg\n",
"import pandas as pd\n",
"import uuid\n",
"\n",
"from datasets import Dataset, load_dataset\n",
"from numpy import load\n",
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "424c0389-4f5b-4d09-9c3a-d9c3a40dd516",
"metadata": {},
"outputs": [],
"source": [
"dataset = pd.read_json(\"./translated_german_alpaca.json\")\n",
"\n",
"dataset[\"id\"] = [str(uuid.uuid4()) for _ in range(len(dataset))]\n",
"dataset[\"metadata\"] = [{\"translation_model\": \"facebook/wmt19-en-de\", \"original_id\": id_}\n",
" for id_ in range(len(dataset))]\n",
"\n",
"ds = Dataset.from_pandas(dataset)\n",
"ds[100]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bdfa59c6-8b44-4677-92bb-99cc9ea516ee",
"metadata": {},
"outputs": [],
"source": [
"sbert_model = \"sentence-transformers/paraphrase-multilingual-mpnet-base-v2\"\n",
"\n",
"encoder = SentenceTransformer(sbert_model, device=\"cuda:0\")\n",
"\n",
"ds = ds.map(\n",
" lambda batch: {\n",
" \"vector_instruction\": encoder.encode(batch[\"instruction\"]),\n",
" \"vector_input\": encoder.encode(batch[\"input\"]),\n",
" \"vector_output\": encoder.encode(batch[\"output\"]),\n",
" },\n",
" batch_size=32,\n",
" batched=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2376970-0594-4158-8357-50c08846bf14",
"metadata": {},
"outputs": [],
"source": [
"# create vector dict with three embedded fields, as expected by argilla data model\n",
"ds = ds.map(\n",
" lambda r: {\"vectors\": {\"instruction\": r[\"vector_instruction\"], \"input\": r[\"vector_input\"], \"output\": r[\"vector_output\"]}}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc11f41c-5f72-4dc7-b21a-6ba5aac1408f",
"metadata": {},
"outputs": [],
"source": [
"ds = ds.rename_columns({\"instruction\": \"_instruction\", \"input\": \"input\", \"output\": \"output\"})\n",
"records = rg.DatasetForTextClassification.from_datasets(ds, inputs=[\"_instruction\", \"input\", \"output\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0080c482-c3f6-4257-867e-cd184c4e173b",
"metadata": {},
"outputs": [],
"source": [
"labels = [\"BAD INSTRUCTION\", \"BAD INPUT\", \"BAD OUTPUT\", \"INAPPROPRIATE\", \"BIASED\", \"ALL GOOD\"]\n",
"\n",
"settings = rg.TextClassificationSettings(label_schema=labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f5f514fa-8d22-4d43-b8d9-a3f47dc1268c",
"metadata": {},
"outputs": [],
"source": [
"records.to_datasets().push_to_hub(\"LEL-A/translated_german_alpaca\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5c31174-5ded-47f5-b3d0-7b7ec308acea",
"metadata": {},
"outputs": [],
"source": [
"rg.init(\n",
" api_key=\"<secret_api_key>\",\n",
" api_url=\"https://lel-a-german-alpaca-test.hf.space\"\n",
")\n",
"rg.log(records=records, name=\"translated_german_alpaca\", batch_size=100)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}