Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion content/model-theory/basics/dlo.tex
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ \section{Dense Linear Orders}
a_n$. Given $a \in \Domain{M_1}$, find $b \in \Domain{M_2}$ as
follows:
\begin{enumerate}
\item if $a <_2 a_1$ let $b \in \Domain{M_2}$ be such that $b <_2
\item if $a <_1 a_1$ let $b \in \Domain{M_2}$ be such that $b <_2
b_1$;
\item if $a_n <_1 a$ let $b \in \Domain{M_2}$ be such that $b_n <_2 b$;
\item if $a_i <_1 a <_1 a_{i+1}$ for some $i$, then let $b \in
Expand Down
14 changes: 7 additions & 7 deletions content/model-theory/basics/isomorphism.tex
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
\olsection{Isomorphic Structures}

First-order !!{structure}s can be alike in one of two ways. One way in
which the can be alike is that they make the same !!{sentence}s
which they can be alike is that they make the same !!{sentence}s
true. We call such !!{structure}s \emph{elementarily equivalent}. But
structures can be very different and still make the same !!{sentence}s
true---for instance, one can be !!{enumerable} and the other not.
Expand Down Expand Up @@ -94,14 +94,14 @@
\begin{align}
h(\Value{t}{M}[s])
& = h(\Assign{f}{M}(\Value{t_1}{M}[s], \dots, \Value{t_n}{M}[s]) \notag\\
& = h(\Assign{f}{M}(\Value{t_1}{M'}[h \circ s], \dots,
\Value{t_n}{M'}[h \circ s]) \ollabel{iso-1}\\
& = \Assign{f}{M'}(h(\Value{t_1}{M}[s]), \dots,
h(\Value{t_n}{M}[s])) \ollabel{iso-1}\\
& = \Assign{f}{M'}(\Value{t_1}{M'}[h \circ s], \dots,
\Value{t_n}{M'}[h \circ s]) \ollabel{iso-2}\\
& = \Value{t}{M'}[h\circ s] \notag
\end{align}
Here, \olref{iso-1} follows by induction hypothesis and \olref{iso-2} by
\olref{defn:iso-func} of \olref{defn:isomorphism}.
Here, \olref{iso-1} follows by \olref{defn:iso-func} of
\olref{defn:isomorphism} and \olref{iso-2} by induction hypothesis.
\end{enumerate}
Part (b) is left as an exercise.

Expand All @@ -117,8 +117,8 @@
\end{prob}

\begin{defn}
An \emph{automorphism} of a structure $\mathfrak{M}$ is an isomorphism
of $\mathfrak{M}$ onto itself.
An \emph{automorphism} of a structure $\Struct{M}$ is an isomorphism
of $\Struct{M}$ onto itself.
\end{defn}

\begin{prob}
Expand Down
4 changes: 2 additions & 2 deletions content/model-theory/basics/partial-iso.tex
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ \section{Partial Isomorphisms}
$x_1$, \dots,~$x_n$, then $\Sat{M}{!A}[s_1]$ if and
only if~$\Sat{N}{!A}[s_2]$.
\item $I_{n+1} (\mathbf{a},\mathbf{b})$ if and only if for every
$a\in A$ there is a $b\in B$ such that $I_n
$a\in \Domain M$ there is a $b\in \Domain N$ such that $I_n
(\mathbf{a}a,\mathbf{b}b)$, and vice-versa.
\end{enumerate}
\end{defn}
Expand Down Expand Up @@ -198,7 +198,7 @@ \section{Partial Isomorphisms}

Given $a \in \Domain M$, let $!T^a_n$ be set of !!{formula}s
$!B(x,\mathbf{y})$ of rank no greater than $n$ satisfied by
$\mathbf{a}a$ in $\Struct{M}$; $\tau^a_n$ is finite, so we can
$\mathbf{a}a$ in $\Struct{M}$; $!T^a_n$ is finite, so we can
assume it is a single first-order !!{formula}. It follows that
$\mathbf{a}$ satisfies $\lexists[x][!T^a_n(x,\mathbf{y})]$, which
has quantifier rank no greater than $n+1$. By hypothesis
Expand Down