Skip to content

Prepare to Technical Skills Here are the essential skills that a Machine Learning Engineer needs, as mentioned Read me files. Within each group are topics that you should be familiar with. Study Tip: Copy and paste this list into a document and save to your computer for easy referral. Computer Science Fundamentals and Programming Topics Data str

License

Notifications You must be signed in to change notification settings

ProHaller/Machine-Learning-Interview-Preparation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine-Learning-Interview-Preparation

Prepare to Technical Skills Here are the essential skills that a Machine Learning Engineer needs, as mentioned Read me files. Within each group are topics that you should be familiar with. Study Tip: Copy and paste this list into a document and save to your computer for easy referral. Computer Science Fundamentals and Programming Topics Data structures: Lists, stacks, queues, strings, hash maps, vectors, matrices, classes & objects, trees, graphs, etc. Algorithms: Recursion, searching, sorting, optimization, dynamic programming, etc. Computability and complexity: P vs. NP, NP-complete problems, big-O notation, approximate algorithms, etc. Computer architecture: Memory, cache, bandwidth, threads & processes, deadlocks, etc. Probability and Statistics Topics Basic probability: Conditional probability, Bayes rule, likelihood, independence, etc. Probabilistic models: Bayes Nets, Markov Decision Processes, Hidden Markov Models, etc. Statistical measures: Mean, median, mode, variance, population parameters vs. sample statistics etc. Proximity and error metrics: Cosine similarity, mean-squared error, Manhattan and Euclidean distance, log-loss, etc. Distributions and random sampling: Uniform, normal, binomial, Poisson, etc. Analysis methods: ANOVA, hypothesis testing, factor analysis, etc. Data Modeling and Evaluation Topics Data preprocessing: Munging/wrangling, transforming, aggregating, etc. Pattern recognition: Correlations, clusters, trends, outliers & anomalies, etc. Dimensionality reduction: Eigenvectors, Principal Component Analysis, etc. Prediction: Classification, regression, sequence prediction, etc.; suitable error/accuracy metrics. Evaluation: Training-testing split, sequential vs. randomized cross-validation, etc. Applying Machine Learning Algorithms and Libraries Topics Models: Parametric vs. nonparametric, decision tree, nearest neighbor, neural net, support vector machine, ensemble of multiple models, etc. Learning procedure: Linear regression, gradient descent, genetic algorithms, bagging, boosting, and other model-specific methods; regularization, hyperparameter tuning, etc. Tradeoffs and gotchas: Relative advantages and disadvantages, bias and variance, overfitting and underfitting, vanishing/exploding gradients, missing data, data leakage, etc. Software Engineering and System Design Topics Software interface: Library calls, REST APIs, data collection endpoints, database queries, etc. User interface: Capturing user inputs & application events, displaying results & visualization, etc. Scalability: Map-reduce, distributed processing, etc. Deployment: Cloud hosting, containers & instances, microservices, etc. Move on to the final lesson of this course to find lots of sample practice questions for each topic!

References To Learn and Develop your Self:

About

Prepare to Technical Skills Here are the essential skills that a Machine Learning Engineer needs, as mentioned Read me files. Within each group are topics that you should be familiar with. Study Tip: Copy and paste this list into a document and save to your computer for easy referral. Computer Science Fundamentals and Programming Topics Data str

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%