Skip to content

Add optimization parameters to OptimizationState #945

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lib/OptimizationBBO/src/OptimizationBBO.jl
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,7 @@ function SciMLBase.__solve(cache::Optimization.OptimizationCache{
opt_state = Optimization.OptimizationState(;
iter = n_steps,
u = curr_u,
p = cache.p,
objective,
original = trace)
cb_call = cache.callback(opt_state, objective)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
curr_u = opt.logger.xbest[end]
opt_state = Optimization.OptimizationState(; iter = length(opt.logger.fmedian),
u = curr_u,
p = cache.p,
objective = opt.logger.fbest[end],
original = opt.logger)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
opt_state = Optimization.OptimizationState(;
iter = decompose_trace(trace).iteration,
u = curr_u,
p = cache.p,
objective = x[1],
original = trace)
cb_call = cache.callback(opt_state, decompose_trace(trace).value...)
Expand Down
1 change: 1 addition & 0 deletions lib/OptimizationMOI/src/nlp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,7 @@ function MOI.eval_objective(evaluator::MOIOptimizationNLPEvaluator, x)
evaluator.iteration += 1
state = Optimization.OptimizationState(iter = evaluator.iteration,
u = x,
p = evaluator.p,
objective = l[1])
evaluator.callback(state, l)
return l
Expand Down
1 change: 1 addition & 0 deletions lib/OptimizationManopt/src/OptimizationManopt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -416,6 +416,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
function _cb(x, θ)
opt_state = Optimization.OptimizationState(iter = 0,
u = θ,
p = cache.p,
objective = x[1])
cb_call = cache.callback(opt_state, x...)
if !(cb_call isa Bool)
Expand Down
2 changes: 1 addition & 1 deletion lib/OptimizationNLopt/src/OptimizationNLopt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ function SciMLBase.__solve(cache::OptimizationCache{

_loss = function (θ)
x = cache.f(θ, cache.p)
opt_state = Optimization.OptimizationState(u = θ, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ, p = cache.p, objective = x[1])
if cache.callback(opt_state, x...)
NLopt.force_stop!(opt_setup)
end
Expand Down
2 changes: 1 addition & 1 deletion lib/OptimizationODE/src/OptimizationODE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ function SciMLBase.__solve(
end
function affect!(integrator)
u_now = integrator.u
state = Optimization.OptimizationState(u=u_now, objective=cache.f(integrator.u, integrator.p))
state = Optimization.OptimizationState(u=u_now, p=integrator.p, objective=cache.f(integrator.u, integrator.p))
Optimization.callback_function(cb, state)
end
cb_struct = DiscreteCallback(condition, affect!)
Expand Down
3 changes: 3 additions & 0 deletions lib/OptimizationOptimJL/src/OptimizationOptimJL.jl
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
θ = metadata[cache.opt isa Optim.NelderMead ? "centroid" : "x"]
opt_state = Optimization.OptimizationState(iter = trace.iteration,
u = θ,
p = cache.p,
objective = trace.value,
grad = get(metadata, "g(x)", nothing),
hess = get(metadata, "h(x)", nothing),
Expand Down Expand Up @@ -262,6 +263,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
metadata["x"]
opt_state = Optimization.OptimizationState(iter = trace.iteration,
u = θ,
p = cache.p,
objective = trace.value,
grad = get(metadata, "g(x)", nothing),
hess = get(metadata, "h(x)", nothing),
Expand Down Expand Up @@ -348,6 +350,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
metadata = decompose_trace(trace).metadata
opt_state = Optimization.OptimizationState(iter = trace.iteration,
u = metadata["x"],
p = cache.p,
grad = get(metadata, "g(x)", nothing),
hess = get(metadata, "h(x)", nothing),
objective = trace.value,
Expand Down
2 changes: 2 additions & 0 deletions lib/OptimizationOptimisers/src/OptimizationOptimisers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
opt_state = Optimization.OptimizationState(
iter = i + (epoch - 1) * length(data),
u = θ,
p = d,
objective = x[1],
grad = G,
original = state)
Expand All @@ -146,6 +147,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
cache.f.grad(G, θ, d)
opt_state = Optimization.OptimizationState(iter = iterations,
u = θ,
p = d,
objective = x[1],
grad = G,
original = state)
Expand Down
2 changes: 1 addition & 1 deletion lib/OptimizationPRIMA/src/OptimizationPRIMA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ function SciMLBase.__solve(cache::Optimization.OptimizationCache{
_loss = function (θ)
x = cache.f(θ, cache.p)
iter += 1
opt_state = Optimization.OptimizationState(u = θ, objective = x[1], iter = iter)
opt_state = Optimization.OptimizationState(u = θ, p = cache.p, objective = x[1], iter = iter)
if cache.callback(opt_state, x...)
error("Optimization halted by callback.")
end
Expand Down
1 change: 1 addition & 0 deletions lib/OptimizationPyCMA/src/OptimizationPyCMA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
_cb = function(es)
opt_state = Optimization.OptimizationState(; iter = pyconvert(Int, es.countiter),
u = pyconvert(Vector{Float64}, es.best.x),
p = cache.p,
objective = pyconvert(Float64, es.best.f),
original = es)

Expand Down
8 changes: 4 additions & 4 deletions lib/OptimizationSciPy/src/OptimizationSciPy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -503,7 +503,7 @@ function SciMLBase.__solve(cache::OptimizationCache{F,RC,LB,UB,LC,UC,S,O,D,P,C})
θ_vec = [θ]
x = cache.f(θ_vec, cache.p)
x = isa(x, Tuple) ? x : (x,)
opt_state = Optimization.OptimizationState(u = θ_vec, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ_vec, p = cache.p, objective = x[1])
if cache.callback(opt_state, x...)
error("Optimization halted by callback")
end
Expand Down Expand Up @@ -656,7 +656,7 @@ function SciMLBase.__solve(cache::OptimizationCache{F,RC,LB,UB,LC,UC,S,O,D,P,C})
θ_vec = [θ]
x = cache.f(θ_vec, cache.p)
x = isa(x, Tuple) ? x : (x,)
opt_state = Optimization.OptimizationState(u = θ_vec, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ_vec, p = cache.p, objective = x[1])
if cache.callback(opt_state, x...)
error("Optimization halted by callback")
end
Expand Down Expand Up @@ -1423,7 +1423,7 @@ function _create_loss(cache; vector_output::Bool = false)
elseif isa(x, Number)
x = (x,)
end
opt_state = Optimization.OptimizationState(u = θ_julia, objective = sum(abs2, x))
opt_state = Optimization.OptimizationState(u = θ_julia, p = cache.p, objective = sum(abs2, x))
if cache.callback(opt_state, x...)
error("Optimization halted by callback")
end
Expand All @@ -1443,7 +1443,7 @@ function _create_loss(cache; vector_output::Bool = false)
elseif isa(x, Number)
x = (x,)
end
opt_state = Optimization.OptimizationState(u = θ_julia, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ_julia, p = cache.p, objective = x[1])
if cache.callback(opt_state, x...)
error("Optimization halted by callback")
end
Expand Down
2 changes: 1 addition & 1 deletion src/auglag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
cache.f.cons(cons_tmp, θ)
cons_tmp[eq_inds] .= cons_tmp[eq_inds] - cache.lcons[eq_inds]
cons_tmp[ineq_inds] .= cons_tmp[ineq_inds] .- cache.ucons[ineq_inds]
opt_state = Optimization.OptimizationState(u = θ, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ, objective = x[1], p = p)
if cache.callback(opt_state, x...)
error("Optimization halted by callback.")
end
Expand Down
4 changes: 2 additions & 2 deletions src/lbfgsb.jl
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
cache.f.cons(cons_tmp, θ)
cons_tmp[eq_inds] .= cons_tmp[eq_inds] - cache.lcons[eq_inds]
cons_tmp[ineq_inds] .= cons_tmp[ineq_inds] .- cache.ucons[ineq_inds]
opt_state = Optimization.OptimizationState(u = θ, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ, objective = x[1], p = cache.p)
if cache.callback(opt_state, x...)
error("Optimization halted by callback.")
end
Expand Down Expand Up @@ -209,7 +209,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
_loss = function (θ)
x = cache.f(θ, cache.p)

opt_state = Optimization.OptimizationState(u = θ, objective = x[1])
opt_state = Optimization.OptimizationState(u = θ, objective = x[1], p = cache.p)
if cache.callback(opt_state, x...)
error("Optimization halted by callback.")
end
Expand Down
3 changes: 2 additions & 1 deletion src/sophia.jl
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,8 @@ function SciMLBase.__solve(cache::OptimizationCache{
u = θ,
objective = first(x),
grad = gₜ,
original = nothing)
original = nothing,
p = d)
cb_call = cache.callback(opt_state, x...)
if !(cb_call isa Bool)
error("The callback should return a boolean `halt` for whether to stop the optimization process. Please see the sciml_train documentation for information.")
Expand Down
8 changes: 5 additions & 3 deletions src/state.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,17 +11,19 @@ and is passed to the callback function as the first argument.
- `gradient`: current gradient
- `hessian`: current hessian
- `original`: if the solver has its own state object then it is stored here
- `p`: optimization parameters
"""
struct OptimizationState{X, O, G, H, S}
struct OptimizationState{X, O, G, H, S, P}
iter::Int
u::X
objective::O
grad::G
hess::H
original::S
p::P
end

function OptimizationState(; iter = 0, u = nothing, objective = nothing,
grad = nothing, hess = nothing, original = nothing)
OptimizationState(iter, u, objective, grad, hess, original)
grad = nothing, hess = nothing, original = nothing, p = nothing)
OptimizationState(iter, u, objective, grad, hess, original, p)
end
Loading