-
Notifications
You must be signed in to change notification settings - Fork 91
Globular pasting diagrams #1671
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
e506e4c
27fde1a
d43933d
f1970a0
08937af
3422cc5
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,71 @@ | ||
| # Batanin systems in globular types | ||
|
|
||
| ```agda | ||
| {-# OPTIONS --guardedness #-} | ||
|
|
||
| module globular-types.batanin-systems-globular-types where | ||
| ``` | ||
|
|
||
| <details><summary>Imports</summary> | ||
|
|
||
| ```agda | ||
| open import foundation.cartesian-product-types | ||
| open import foundation.dependent-pair-types | ||
| open import foundation.empty-types | ||
| open import foundation.universe-levels | ||
|
|
||
| open import globular-types.globular-types | ||
|
|
||
| open import lists.lists | ||
|
|
||
| open import trees.plane-trees | ||
| ``` | ||
|
|
||
| </details> | ||
|
|
||
| ## Idea | ||
|
|
||
| A | ||
| {{#concept "Batanin system" Disambiguation="globular types" Agda=batanin-system-Globular-Type}} | ||
| is similar to a | ||
| [pasting diagram](globular-types.globular-pasting-diagrams.md) of | ||
| [globular types](globular-types.globular-types.md), but it is defined directly in terms of its cells and not as a [globular map](globular-types.globular-maps.md) from a representing object. | ||
|
|
||
| ## Definition | ||
|
|
||
| ### Batanin systems | ||
|
|
||
| ```agda | ||
| module _ | ||
| {l1 : Level} | ||
| where | ||
|
|
||
| mutual | ||
| batanin-system-Globular-Type : | ||
| (T : listed-plane-tree) (G : Globular-Type l1 l1) → UU l1 | ||
| batanin-system-Globular-Type (make-listed-plane-tree nil) G = | ||
| 0-cell-Globular-Type G | ||
| batanin-system-Globular-Type (make-listed-plane-tree (cons T ℓ)) G = | ||
| Σ ( 0-cell-Globular-Type G) | ||
| ( λ x → | ||
| Σ ( batanin-system-Globular-Type (make-listed-plane-tree ℓ) G) | ||
| ( λ B → | ||
| batanin-system-Globular-Type T | ||
| ( 1-cell-globular-type-Globular-Type G | ||
| ( x) | ||
| ( source-cell-batanin-system-Globular-Type | ||
| ( make-listed-plane-tree ℓ) | ||
| ( G) | ||
| ( B))))) | ||
|
|
||
| source-cell-batanin-system-Globular-Type : | ||
| (T : listed-plane-tree) (G : Globular-Type l1 l1) | ||
| (B : batanin-system-Globular-Type T G) → 0-cell-Globular-Type G | ||
| source-cell-batanin-system-Globular-Type (make-listed-plane-tree nil) G B = | ||
| B | ||
| source-cell-batanin-system-Globular-Type | ||
| ( make-listed-plane-tree (cons T ℓ)) | ||
| ( G) | ||
| ( B) = | ||
| pr1 B | ||
| ``` |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,62 @@ | ||
| # Globular disks | ||
|
|
||
| ```agda | ||
| {-# OPTIONS --guardedness #-} | ||
|
|
||
| module globular-types.globular-disks where | ||
| ``` | ||
|
|
||
| <details><summary>Imports</summary> | ||
|
|
||
| ```agda | ||
| open import elementary-number-theory.natural-numbers | ||
|
|
||
| open import foundation.booleans | ||
| open import foundation.unit-type | ||
| open import foundation.universe-levels | ||
|
|
||
| open import globular-types.empty-globular-types | ||
| open import globular-types.globular-suspension | ||
| open import globular-types.globular-types | ||
| ``` | ||
|
|
||
| </details> | ||
|
|
||
| ## Idea | ||
|
|
||
| The | ||
| {{#concept "globular `n`-disk" Disambiguation="globular type" Agda=globular-disk}} | ||
| is a [globular type](globular-types.globular-types.md) with the property that | ||
| `n`-cells in an arbitrary globular type `G` are equivalently described as | ||
| [globular maps](globular-types.globular-maps.md) from the globular `n`-disk into | ||
| `G`. In other words, the globular `n`-disk can be thought of as the representing | ||
| `n`-cell. | ||
|
|
||
| ## Definitions | ||
|
|
||
| ### The globular `0`-disk | ||
|
|
||
| ```agda | ||
| 0-cell-globular-0-disk : UU lzero | ||
| 0-cell-globular-0-disk = unit | ||
|
|
||
| 1-cell-globular-type-globular-0-disk : | ||
| (x y : 0-cell-globular-0-disk) → Globular-Type lzero lzero | ||
| 1-cell-globular-type-globular-0-disk x y = | ||
| empty-Globular-Type | ||
|
|
||
| globular-0-disk : | ||
| Globular-Type lzero lzero | ||
| 0-cell-Globular-Type globular-0-disk = | ||
| 0-cell-globular-0-disk | ||
| 1-cell-globular-type-Globular-Type globular-0-disk = | ||
| 1-cell-globular-type-globular-0-disk | ||
| ``` | ||
|
|
||
| ### The globular `n`-disk | ||
|
|
||
| ```agda | ||
| globular-disk : (n : ℕ) → Globular-Type lzero lzero | ||
| globular-disk zero-ℕ = globular-0-disk | ||
| globular-disk (succ-ℕ n) = suspension-Globular-Type (globular-disk n) | ||
| ``` |
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
| @@ -0,0 +1,43 @@ | ||||||
| # Globular pasting diagrams | ||||||
|
|
||||||
| ```agda | ||||||
| {-# OPTIONS --guardedness #-} | ||||||
|
|
||||||
| module globular-types.globular-pasting-diagrams where | ||||||
| ``` | ||||||
|
|
||||||
| <details><summary>Imports</summary> | ||||||
|
|
||||||
| ```agda | ||||||
| open import foundation.universe-levels | ||||||
|
|
||||||
| open import globular-types.globular-maps | ||||||
| open import globular-types.globular-pasting-schemes | ||||||
| open import globular-types.globular-types | ||||||
|
|
||||||
| open import trees.plane-trees | ||||||
| ``` | ||||||
|
|
||||||
| </details> | ||||||
|
|
||||||
| ## Idea | ||||||
|
|
||||||
| A | ||||||
| {{#concept "globular pasting diamgram" Disambiguation="globular types" Agda=pasting-diagram-Globular-Type}} | ||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
| in a [globular type](globular-types.globular-types.md) `G` is a | ||||||
| [globular map](globular-types.globular-maps.md) from a | ||||||
| [globular pasting scheme](globular-types.globular-pasting-schemes.md) into `G`. | ||||||
|
|
||||||
| ## Definitions | ||||||
|
|
||||||
| ### Globular pasting diagrams | ||||||
|
|
||||||
| ```agda | ||||||
| module _ | ||||||
| {l1 l2 : Level} (T : listed-plane-tree) (G : Globular-Type l1 l2) | ||||||
| where | ||||||
|
|
||||||
| pasting-diagram-Globular-Type : UU (l1 ⊔ l2) | ||||||
| pasting-diagram-Globular-Type = | ||||||
| globular-map (pasting-scheme-Globular-Type T) G | ||||||
| ``` | ||||||
| Original file line number | Diff line number | Diff line change | ||||||
|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,142 @@ | ||||||||
| # Globular pasting schemes | ||||||||
|
|
||||||||
| ```agda | ||||||||
| {-# OPTIONS --guardedness #-} | ||||||||
|
|
||||||||
| module globular-types.globular-pasting-schemes where | ||||||||
| ``` | ||||||||
|
|
||||||||
| <details><summary>Imports</summary> | ||||||||
|
|
||||||||
| ```agda | ||||||||
| open import foundation.coproduct-types | ||||||||
| open import foundation.dependent-pair-types | ||||||||
| open import foundation.identity-types | ||||||||
| open import foundation.maybe | ||||||||
| open import foundation.unit-type | ||||||||
| open import foundation.universe-levels | ||||||||
|
|
||||||||
| open import globular-types.empty-globular-types | ||||||||
| open import globular-types.globular-disks | ||||||||
| open import globular-types.globular-types | ||||||||
|
|
||||||||
| open import lists.lists | ||||||||
|
|
||||||||
| open import trees.plane-trees | ||||||||
| ``` | ||||||||
|
|
||||||||
| </details> | ||||||||
|
|
||||||||
| ## Idea | ||||||||
|
|
||||||||
| Consider a [plane tree](trees.plane-trees.md) `T` such as | ||||||||
|
|
||||||||
| ```text | ||||||||
| * * * | ||||||||
| \ / | | ||||||||
| \ / | | ||||||||
| \ / | | ||||||||
| * * * | ||||||||
| \ | / | ||||||||
| \ | / | ||||||||
| \ | / | ||||||||
| * | ||||||||
| ``` | ||||||||
|
|
||||||||
| The | ||||||||
| {{#concept "globular pasting scheme" Disambiguation="globular type" Agda=pasting-scheme-Globular-Type}} | ||||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. In section 8.1 https://arxiv.org/pdf/math/0305049 Leinster refers to these as globular pasting diagrams. Although, I do like your naming choice, since it is transferrable to how we view functors F : C -> D as C-diagrams in D. |
||||||||
| of shape `T` is a [globular type](globular-types.globular-types.md) defined | ||||||||
| inductively on the shape of `T` as follows: | ||||||||
|
|
||||||||
| - If `T = nil`, then the pasting scheme of shape `T` is a representing 0-cell. | ||||||||
| That is, a pasting scheme of shape nil is the | ||||||||
| [0-disk](globular-types.globular-disks.md). | ||||||||
| - If `T = S ∷ ℓ`, where `ℓ` is a [list](lists.lists.md) of plane trees, then the | ||||||||
| pasting scheme of shape `T` consists a 0-cell `x₀`, the pasting scheme of | ||||||||
| shape `ℓ` seen as a plane tree, which has an initial 0-cell `x₁`, and the | ||||||||
| globular type of `1`-cells between `x₀` and `x₁` is the pasting scheme of | ||||||||
| shape `T`. | ||||||||
|
Comment on lines
+54
to
+58
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think some information is missing about the connection between
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. and |
||||||||
|
|
||||||||
| In other words, a globular pasting scheme is a representing object for | ||||||||
| [globular pasting diagrams](globular-types.globular-pasting-diagrams.md) of its | ||||||||
| shape. The example plane tree `T` displayed above gives the following pasting | ||||||||
| scheme: | ||||||||
|
|
||||||||
| ```text | ||||||||
| _____ | ||||||||
| / ∥ \ ______ | ||||||||
| / ∨ ∨ / ∥ ∨ | ||||||||
| * ------> * ------> * ∥ * | ||||||||
| \ ∥ ∧ \ ∨ ∧ | ||||||||
| \ ∨ / ------ | ||||||||
| ----- | ||||||||
| ``` | ||||||||
|
|
||||||||
| ## Definitions | ||||||||
|
|
||||||||
| ### Pasting schemes | ||||||||
|
|
||||||||
| ```agda | ||||||||
| module _ | ||||||||
| where | ||||||||
|
Comment on lines
+80
to
+81
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Since this module is empty it can be removed |
||||||||
|
|
||||||||
| pasting-scheme-Globular-Type : | ||||||||
| (T : listed-plane-tree) → Globular-Type lzero lzero | ||||||||
| pasting-scheme-Globular-Type (make-listed-plane-tree nil) = | ||||||||
| globular-0-disk | ||||||||
| 0-cell-Globular-Type (pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons T ℓ))) = | ||||||||
| Maybe | ||||||||
| ( 0-cell-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree ℓ))) | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil))) | ||||||||
| ( inl x) | ||||||||
| ( inl y) = | ||||||||
| empty-Globular-Type | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil))) | ||||||||
| ( inl x) | ||||||||
| ( inr y) = | ||||||||
| empty-Globular-Type | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil))) | ||||||||
| ( inr x) | ||||||||
| ( inl y) = | ||||||||
| pasting-scheme-Globular-Type T | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T nil))) | ||||||||
| ( inr x) | ||||||||
| ( inr y) = | ||||||||
| empty-Globular-Type | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons S (cons T ℓ)))) | ||||||||
| ( inl x) | ||||||||
| ( inl y) = | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type (make-listed-plane-tree (cons T ℓ))) x y | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons S (cons T ℓ)))) | ||||||||
| ( inl x) | ||||||||
| ( inr y) = | ||||||||
| empty-Globular-Type | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons S (cons T ℓ)))) | ||||||||
| ( inr x) | ||||||||
| ( inl (inl y)) = empty-Globular-Type | ||||||||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons S (cons T ℓ)))) | ||||||||
| ( inr x) | ||||||||
| ( inl (inr y)) = | ||||||||
| pasting-scheme-Globular-Type S | ||||||||
| 1-cell-globular-type-Globular-Type | ||||||||
| ( pasting-scheme-Globular-Type | ||||||||
| ( make-listed-plane-tree (cons S (cons T ℓ)))) | ||||||||
| ( inr x) | ||||||||
| ( inr y) = | ||||||||
| empty-Globular-Type | ||||||||
| ``` | ||||||||
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This name seems reasonable. A reference you might add is this one, which seems to be the first publication where Batanin uses these systems
It'd be nice if you explained that the term "Batanin system" comes from the fact that it is a model of a batanin tree in a globular type, i.e., a "labeled batanin tree".
I also like the reference
In Proposition 8.1.1 it is demonstrated that batanin trees are equivalent to globular pasting diagrams/*schemes.