Skip to content
Merged
Show file tree
Hide file tree
Changes from 33 commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
a03c457
Reconcile
lowasser Nov 12, 2025
7ab800e
Fix terms
lowasser Nov 12, 2025
bdccd7d
Merge branch 'master' into semiring-multiple
lowasser Nov 12, 2025
f39547b
Progress
lowasser Nov 12, 2025
527195a
Fix link
lowasser Nov 12, 2025
08d0d7f
Merge remote-tracking branch 'origin/semiring-multiple' into semiring…
lowasser Nov 12, 2025
7787761
Merge branch 'semiring-multiple' into harmonic-divergence
lowasser Nov 12, 2025
74c8834
The harmonic series diverges
lowasser Nov 13, 2025
a3f2674
make pre-commit
lowasser Nov 13, 2025
90d4c5e
Fix missing quote
lowasser Nov 13, 2025
c1f62ee
Fix wrong concept link
lowasser Nov 13, 2025
2ff9ea4
Right law should be left
lowasser Nov 13, 2025
a3b6b3d
Add link in 100-theorems page
lowasser Nov 13, 2025
6a78270
Fix rights and lefts again
lowasser Nov 13, 2025
5e61cc7
Apply suggestions from code review
lowasser Nov 13, 2025
07465d3
Merge remote-tracking branch 'origin/semiring-multiple' into semiring…
lowasser Nov 13, 2025
8b1538e
Merge branch 'master' into semiring-multiple
lowasser Nov 13, 2025
dd66b62
Update naming for finite algebra
lowasser Nov 13, 2025
eb4a86b
Merge branch 'semiring-multiple' into harmonic-divergence
lowasser Nov 13, 2025
f94ffaa
Fix
lowasser Nov 13, 2025
83126e9
Update src/commutative-algebra/multiples-of-elements-commutative-semi…
fredrik-bakke Nov 13, 2025
4758442
Update src/ring-theory/multiples-of-elements-rings.lagda.md
fredrik-bakke Nov 13, 2025
aff41c8
Merge branch 'semiring-multiple' into harmonic-divergence
lowasser Nov 13, 2025
61d14f9
Merge branch 'master' into harmonic-divergence
lowasser Nov 13, 2025
f053245
Use series-Q in triangular numbers
lowasser Nov 13, 2025
92fe695
Update src/elementary-number-theory/unit-fractions-rational-numbers.l…
lowasser Nov 14, 2025
aee2659
Update src/elementary-number-theory/sums-of-finite-sequences-of-ratio…
lowasser Nov 14, 2025
84a2366
Respond to review comments
lowasser Nov 14, 2025
4f136c0
Respond to review comments
lowasser Nov 14, 2025
e277b36
Respond to review comments
lowasser Nov 14, 2025
419f77b
Update src/elementary-number-theory/harmonic-series-rational-numbers.…
lowasser Nov 15, 2025
f5846f9
Update src/elementary-number-theory/harmonic-series-rational-numbers.…
lowasser Nov 15, 2025
ca026a1
Merge branch 'master' into harmonic-divergence
lowasser Nov 15, 2025
ef55580
Respond to review comments
lowasser Nov 16, 2025
6f7f452
Merge remote-tracking branch 'origin/harmonic-divergence' into harmon…
lowasser Nov 16, 2025
4f2b02c
Use increasing sequences
lowasser Nov 16, 2025
d2aec34
Update src/order-theory/increasing-sequences-posets.lagda.md
fredrik-bakke Nov 17, 2025
caaf0d8
Merge branch 'master' into harmonic-divergence
fredrik-bakke Nov 17, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions src/analysis/convergent-series-metric-abelian-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ module _
is-sum-prop-series-Metric-Ab =
is-limit-prop-sequence-Metric-Space
( metric-space-Metric-Ab G)
( partial-sum-series-Metric-Ab G σ)
( partial-sum-series-Metric-Ab σ)

is-sum-series-Metric-Ab : type-Metric-Ab G → UU l2
is-sum-series-Metric-Ab s = type-Prop (is-sum-prop-series-Metric-Ab s)
Expand All @@ -52,7 +52,7 @@ module _
is-convergent-prop-series-Metric-Ab =
subtype-convergent-sequence-Metric-Space
( metric-space-Metric-Ab G)
( partial-sum-series-Metric-Ab G σ)
( partial-sum-series-Metric-Ab σ)

is-convergent-series-Metric-Ab : UU (l1 ⊔ l2)
is-convergent-series-Metric-Ab =
Expand All @@ -76,7 +76,7 @@ module _

partial-sum-convergent-series-Metric-Ab : sequence (type-Metric-Ab G)
partial-sum-convergent-series-Metric-Ab =
partial-sum-series-Metric-Ab G series-convergent-series-Metric-Ab
partial-sum-series-Metric-Ab series-convergent-series-Metric-Ab
```

## The partial sums of a convergent series have a limit, the sum of the series
Expand Down
50 changes: 25 additions & 25 deletions src/analysis/series-metric-abelian-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ module _

```agda
module _
{l1 l2 : Level} (G : Metric-Ab l1 l2)
{l1 l2 : Level} {G : Metric-Ab l1 l2}
where

partial-sum-series-Metric-Ab : series-Metric-Ab G → ℕ → type-Metric-Ab G
Expand All @@ -95,14 +95,14 @@ module _

```agda
module _
{l1 l2 : Level} (G : Metric-Ab l1 l2)
{l1 l2 : Level} {G : Metric-Ab l1 l2}
where

eq-term-diff-partial-sum-series-Metric-Ab :
(f : series-Metric-Ab G) (n : ℕ) →
add-Metric-Ab G
( partial-sum-series-Metric-Ab G f (succ-ℕ n))
( neg-Metric-Ab G (partial-sum-series-Metric-Ab G f n)) =
( partial-sum-series-Metric-Ab f (succ-ℕ n))
( neg-Metric-Ab G (partial-sum-series-Metric-Ab f n)) =
term-series-Metric-Ab f n
eq-term-diff-partial-sum-series-Metric-Ab (series-terms-Metric-Ab f) n =
ap-add-Metric-Ab G
Expand All @@ -118,21 +118,21 @@ module _

```agda
module _
{l1 l2 : Level} (G : Metric-Ab l1 l2)
{l1 l2 : Level} {G : Metric-Ab l1 l2}
where

htpy-htpy-partial-sum-series-Metric-Ab :
{σ τ : series-Metric-Ab G} →
(partial-sum-series-Metric-Ab G σ ~ partial-sum-series-Metric-Ab G τ) →
(partial-sum-series-Metric-Ab σ ~ partial-sum-series-Metric-Ab τ) →
term-series-Metric-Ab σ ~ term-series-Metric-Ab τ
htpy-htpy-partial-sum-series-Metric-Ab {σ} {τ} psσ~psτ n =
inv (eq-term-diff-partial-sum-series-Metric-Ab G σ n) ∙
inv (eq-term-diff-partial-sum-series-Metric-Ab σ n) ∙
ap-right-subtraction-Ab (ab-Metric-Ab G) (psσ~psτ (succ-ℕ n)) (psσ~psτ n) ∙
eq-term-diff-partial-sum-series-Metric-Ab G τ n
eq-term-diff-partial-sum-series-Metric-Ab τ n

eq-htpy-partial-sum-series-Metric-Ab :
{σ τ : series-Metric-Ab G} →
(partial-sum-series-Metric-Ab G σ ~ partial-sum-series-Metric-Ab G τ) →
(partial-sum-series-Metric-Ab σ ~ partial-sum-series-Metric-Ab τ) →
σ = τ
eq-htpy-partial-sum-series-Metric-Ab psσ~psτ =
eq-htpy-term-series-Metric-Ab G
Expand All @@ -155,31 +155,30 @@ module _

```agda
module _
{l1 l2 : Level} (G : Metric-Ab l1 l2)
{l1 l2 : Level} {G : Metric-Ab l1 l2}
where

abstract
partial-sum-drop-series-Metric-Ab :
(n : ℕ) (σ : series-Metric-Ab G) (i : ℕ) →
partial-sum-series-Metric-Ab G (drop-series-Metric-Ab n σ) i =
(n : ℕ) (σ : series-Metric-Ab G) (i : ℕ) →
partial-sum-series-Metric-Ab (drop-series-Metric-Ab n σ) i =
diff-Metric-Ab G
( partial-sum-series-Metric-Ab G σ (n +ℕ i))
( partial-sum-series-Metric-Ab G σ n)
partial-sum-drop-series-Metric-Ab n (series-terms-Metric-Ab σ) i =
( partial-sum-series-Metric-Ab σ (n +ℕ i))
( partial-sum-series-Metric-Ab σ n)
partial-sum-drop-series-Metric-Ab n s@(series-terms-Metric-Ab σ) i =
inv
( equational-reasoning
diff-Metric-Ab G
( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ)
( n +ℕ i))
( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n)
( partial-sum-series-Metric-Ab s (n +ℕ i))
( partial-sum-series-Metric-Ab s n)
diff-Metric-Ab G
( add-Metric-Ab G
( sum-fin-sequence-type-Ab (ab-Metric-Ab G) n
( σ ∘ nat-Fin (n +ℕ i) ∘ inl-coproduct-Fin n i))
( sum-fin-sequence-type-Ab (ab-Metric-Ab G) i
( σ ∘ nat-Fin (n +ℕ i) ∘ inr-coproduct-Fin n i)))
( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n)
( partial-sum-series-Metric-Ab s n)
by
ap-diff-Metric-Ab G
( split-sum-fin-sequence-type-Ab
Expand All @@ -191,10 +190,11 @@ module _
diff-Metric-Ab G
( add-Metric-Ab G
( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n)
( partial-sum-series-Metric-Ab G
( series-terms-Metric-Ab (σ ∘ add-ℕ n)) i))
( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n)
( partial-sum-series-Metric-Ab s n)
( partial-sum-series-Metric-Ab
( series-terms-Metric-Ab {G = G} (σ ∘ add-ℕ n))
( i)))
( partial-sum-series-Metric-Ab s n)
by
ap-diff-Metric-Ab G
( ap-add-Metric-Ab G
Expand All @@ -204,8 +204,8 @@ module _
( λ j → ap σ (nat-inr-coproduct-Fin n i j))))
( refl)
partial-sum-series-Metric-Ab G
( series-terms-Metric-Ab (σ ∘ add-ℕ n))
partial-sum-series-Metric-Ab
( series-terms-Metric-Ab {G = G} (σ ∘ add-ℕ n))
( i)
by is-identity-left-conjugation-Ab (ab-Metric-Ab G) _ _)
```
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ module commutative-algebra.sums-of-finite-sequences-of-elements-commutative-ring

```agda
open import commutative-algebra.commutative-rings
open import commutative-algebra.multiples-of-elements-commutative-rings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers
Expand Down Expand Up @@ -244,6 +245,19 @@ module _
preserves-sum-permutation-fin-sequence-type-Ring (ring-Commutative-Ring A)
```

### The sum of a constant finite sequence in a commutative ring is scalar multiplication by the length of the sequence

```agda
abstract
sum-constant-fin-sequence-type-Commutative-Ring :
{l : Level} (R : Commutative-Ring l) (n : ℕ) →
(x : type-Commutative-Ring R) →
sum-fin-sequence-type-Commutative-Ring R n (λ _ → x) =
multiple-Commutative-Ring R n x
sum-constant-fin-sequence-type-Commutative-Ring R =
sum-constant-fin-sequence-type-Ring (ring-Commutative-Ring R)
```

## See also

- [Sums of finite families of elements in commutative rings](commutative-algebra.sums-of-finite-families-of-elements-commutative-rings.md)
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ module commutative-algebra.sums-of-finite-sequences-of-elements-commutative-semi

```agda
open import commutative-algebra.commutative-semirings
open import commutative-algebra.multiples-of-elements-commutative-semirings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers
Expand Down Expand Up @@ -260,3 +261,16 @@ module _
preserves-sum-permutation-fin-sequence-type-Semiring
( semiring-Commutative-Semiring R)
```

### The sum of a constant finite sequence in a commutative semiring is scalar multiplication by the length of the sequence

```agda
abstract
sum-constant-fin-sequence-type-Commutative-Semiring :
{l : Level} (R : Commutative-Semiring l) (n : ℕ) →
(x : type-Commutative-Semiring R) →
sum-fin-sequence-type-Commutative-Semiring R n (λ _ → x) =
multiple-Commutative-Semiring R n x
sum-constant-fin-sequence-type-Commutative-Semiring R =
sum-constant-fin-sequence-type-Semiring (semiring-Commutative-Semiring R)
```
3 changes: 3 additions & 0 deletions src/elementary-number-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ open import elementary-number-theory.greatest-common-divisor-natural-numbers pub
open import elementary-number-theory.group-of-integers public
open import elementary-number-theory.half-integers public
open import elementary-number-theory.hardy-ramanujan-number public
open import elementary-number-theory.harmonic-series-rational-numbers public
open import elementary-number-theory.inclusion-natural-numbers-conatural-numbers public
open import elementary-number-theory.inequalities-positive-and-negative-rational-numbers public
open import elementary-number-theory.inequality-arithmetic-geometric-means-integers public
Expand Down Expand Up @@ -200,6 +201,7 @@ open import elementary-number-theory.ring-extension-rational-numbers-of-rational
open import elementary-number-theory.ring-of-integers public
open import elementary-number-theory.ring-of-rational-numbers public
open import elementary-number-theory.semiring-of-natural-numbers public
open import elementary-number-theory.series-rational-numbers public
open import elementary-number-theory.sieve-of-eratosthenes public
open import elementary-number-theory.square-free-natural-numbers public
open import elementary-number-theory.square-roots-positive-rational-numbers public
Expand All @@ -219,6 +221,7 @@ open import elementary-number-theory.strict-inequality-rational-numbers public
open import elementary-number-theory.strict-inequality-standard-finite-types public
open import elementary-number-theory.strictly-ordered-pairs-of-natural-numbers public
open import elementary-number-theory.strong-induction-natural-numbers public
open import elementary-number-theory.sums-of-finite-sequences-of-rational-numbers public
open import elementary-number-theory.sums-of-natural-numbers public
open import elementary-number-theory.sylvesters-sequence public
open import elementary-number-theory.taxicab-numbers public
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,12 @@ open import commutative-algebra.powers-of-elements-commutative-semirings
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.nonzero-natural-numbers
open import elementary-number-theory.products-of-natural-numbers
open import elementary-number-theory.semiring-of-natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
```

Expand Down Expand Up @@ -103,6 +105,9 @@ abstract
is-nonzero-exp-ℕ m zero-ℕ p = is-nonzero-one-ℕ
is-nonzero-exp-ℕ m (succ-ℕ n) p =
is-nonzero-mul-ℕ (m ^ℕ n) m (is-nonzero-exp-ℕ m n p) p

exp-ℕ⁺ : ℕ⁺ → ℕ → ℕ⁺
exp-ℕ⁺ (n , n≠0) m = (exp-ℕ n m , is-nonzero-exp-ℕ n m n≠0)
```

### The exponent $m^n$ is equal to the $n$-fold product of $m$
Expand Down
Loading