Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 80 additions & 67 deletions infer_wild.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,73 +25,86 @@ def parse_args():
opts = parser.parse_args()
return opts

opts = parse_args()
args = get_config(opts.config)
if __name__ == '__main__':
# due to RuntimeError: freeze_support() on Windows: https://github.com/pytorch/pytorch/issues/5858
torch.multiprocessing.freeze_support()

model_backbone = load_backbone(args)
if torch.cuda.is_available():
model_backbone = nn.DataParallel(model_backbone)
model_backbone = model_backbone.cuda()
opts = parse_args()
args = get_config(opts.config)

model_backbone = load_backbone(args)
if torch.cuda.is_available():
model_backbone = nn.DataParallel(model_backbone)
model_backbone = model_backbone.cuda()

print('Loading checkpoint', opts.evaluate)
checkpoint = torch.load(opts.evaluate, map_location=lambda storage, loc: storage)

print('Loading checkpoint', opts.evaluate)
checkpoint = torch.load(opts.evaluate, map_location=lambda storage, loc: storage)
model_backbone.load_state_dict(checkpoint['model_pos'], strict=True)
model_pos = model_backbone
model_pos.eval()
testloader_params = {
'batch_size': 1,
'shuffle': False,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True,
'drop_last': False
}
# fix KeyError: ‘unexpected key “module.*
# https://discuss.pytorch.org/t/solved-keyerror-unexpected-key-module-encoder-embedding-weight-in-state-dict/1686/3
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint['model_pos'].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v

vid = imageio.get_reader(opts.vid_path, 'ffmpeg')
fps_in = vid.get_meta_data()['fps']
vid_size = vid.get_meta_data()['size']
os.makedirs(opts.out_path, exist_ok=True)

if opts.pixel:
# Keep relative scale with pixel coornidates
wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, vid_size=vid_size, scale_range=None, focus=opts.focus)
else:
# Scale to [-1,1]
wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, scale_range=[1,1], focus=opts.focus)

test_loader = DataLoader(wild_dataset, **testloader_params)

results_all = []
with torch.no_grad():
for batch_input in tqdm(test_loader):
N, T = batch_input.shape[:2]
if torch.cuda.is_available():
batch_input = batch_input.cuda()
if args.no_conf:
batch_input = batch_input[:, :, :, :2]
if args.flip:
batch_input_flip = flip_data(batch_input)
predicted_3d_pos_1 = model_pos(batch_input)
predicted_3d_pos_flip = model_pos(batch_input_flip)
predicted_3d_pos_2 = flip_data(predicted_3d_pos_flip) # Flip back
predicted_3d_pos = (predicted_3d_pos_1 + predicted_3d_pos_2) / 2.0
else:
predicted_3d_pos = model_pos(batch_input)
if args.rootrel:
predicted_3d_pos[:,:,0,:]=0 # [N,T,17,3]
else:
predicted_3d_pos[:,0,0,2]=0
pass
if args.gt_2d:
predicted_3d_pos[...,:2] = batch_input[...,:2]
results_all.append(predicted_3d_pos.cpu().numpy())

results_all = np.hstack(results_all)
results_all = np.concatenate(results_all)
render_and_save(results_all, '%s/X3D.mp4' % (opts.out_path), keep_imgs=False, fps=fps_in)
if opts.pixel:
# Convert to pixel coordinates
results_all = results_all * (min(vid_size) / 2.0)
results_all[:,:,:2] = results_all[:,:,:2] + np.array(vid_size) / 2.0
np.save('%s/X3D.npy' % (opts.out_path), results_all)
model_backbone.load_state_dict(new_state_dict, strict=True)
model_pos = model_backbone
model_pos.eval()
testloader_params = {
'batch_size': 1,
'shuffle': False,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True,
'drop_last': False
}

vid = imageio.get_reader(opts.vid_path, 'ffmpeg')
fps_in = vid.get_meta_data()['fps']
vid_size = vid.get_meta_data()['size']
os.makedirs(opts.out_path, exist_ok=True)

if opts.pixel:
# Keep relative scale with pixel coornidates
wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, vid_size=vid_size, scale_range=None, focus=opts.focus)
else:
# Scale to [-1,1]
wild_dataset = WildDetDataset(opts.json_path, clip_len=opts.clip_len, scale_range=[1,1], focus=opts.focus)

test_loader = DataLoader(wild_dataset, **testloader_params)

results_all = []
with torch.no_grad():
for batch_input in tqdm(test_loader):
N, T = batch_input.shape[:2]
if torch.cuda.is_available():
batch_input = batch_input.cuda()
if args.no_conf:
batch_input = batch_input[:, :, :, :2]
if args.flip:
batch_input_flip = flip_data(batch_input)
predicted_3d_pos_1 = model_pos(batch_input)
predicted_3d_pos_flip = model_pos(batch_input_flip)
predicted_3d_pos_2 = flip_data(predicted_3d_pos_flip) # Flip back
predicted_3d_pos = (predicted_3d_pos_1 + predicted_3d_pos_2) / 2.0
else:
predicted_3d_pos = model_pos(batch_input)
if args.rootrel:
predicted_3d_pos[:,:,0,:]=0 # [N,T,17,3]
else:
predicted_3d_pos[:,0,0,2]=0
pass
if args.gt_2d:
predicted_3d_pos[...,:2] = batch_input[...,:2]
results_all.append(predicted_3d_pos.cpu().numpy())

results_all = np.hstack(results_all)
results_all = np.concatenate(results_all)
render_and_save(results_all, '%s/X3D.mp4' % (opts.out_path), keep_imgs=False, fps=fps_in)
if opts.pixel:
# Convert to pixel coordinates
results_all = results_all * (min(vid_size) / 2.0)
results_all[:,:,:2] = results_all[:,:,:2] + np.array(vid_size) / 2.0
np.save('%s/X3D.npy' % (opts.out_path), results_all)