Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions 4-Object_Detection/YOLOV3/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,10 +60,12 @@ def train_step(image_data, target):

gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
tf.print("=> STEP %4d lr: %.6f giou_loss: %4.2f conf_loss: %4.2f "
"prob_loss: %4.2f total_loss: %4.2f" %(global_steps, optimizer.lr.numpy(),
giou_loss, conf_loss,
prob_loss, total_loss))
tf.print("=> STEP " + tf.strings.as_string(global_steps) +
"\tlr: " + tf.strings.as_string(optimizer.lr, 6) +
"\tgiou_loss: " + tf.strings.as_string(giou_loss, 2) +
"\tconf_loss: " + tf.strings.as_string(conf_loss, 2) +
"\tprob_loss: " + tf.strings.as_string(prob_loss, 2) +
"\ttotal_loss: " + tf.strings.as_string(total_loss, 2))
# update learning rate
global_steps.assign_add(1)
if global_steps < warmup_steps:
Expand All @@ -72,7 +74,7 @@ def train_step(image_data, target):
lr = cfg.TRAIN.LR_END + 0.5 * (cfg.TRAIN.LR_INIT - cfg.TRAIN.LR_END) * (
(1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))
)
optimizer.lr.assign(lr.numpy())
optimizer.lr.assign(tf.cast(lr, tf.float32))

# writing summary data
with writer.as_default():
Expand Down