Skip to content

feat: add solutions to lc problem: No.1277 #4657

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 110 additions & 24 deletions solution/1200-1299/1277.Count Square Submatrices with All Ones/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ tags:
  [0,1,1,1]
]
<strong>输出:</strong>15
<strong>解释:</strong>
<strong>解释:</strong>
边长为 1 的正方形有 <strong>10</strong> 个。
边长为 2 的正方形有 <strong>4</strong> 个。
边长为 3 的正方形有 <strong>1</strong> 个。
Expand All @@ -42,15 +42,15 @@ tags:

<p><strong>示例 2:</strong></p>

<pre><strong>输入:</strong>matrix =
<pre><strong>输入:</strong>matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
<strong>输出:</strong>7
<strong>解释:</strong>
边长为 1 的正方形有 <strong>6</strong> 个。
边长为 1 的正方形有 <strong>6</strong> 个。
边长为 2 的正方形有 <strong>1</strong> 个。
正方形的总数 = 6 + 1 = <strong>7</strong>.
</pre>
Expand All @@ -71,7 +71,20 @@ tags:

<!-- solution:start -->

### 方法一
### 方法一:动态规划

我们定义 $f[i][j]$ 为以 $(i,j)$ 为右下角的正方形子矩阵的边长,初始时 $f[i][j] = 0$,答案为 $\sum_{i,j} f[i][j]$。

考虑 $f[i][j]$ 如何进行状态转移。

- 当 $\text{matrix}[i][j] = 0$ 时,有 $f[i][j] = 0$。
- 当 $\text{matrix}[i][j] = 1$ 时,状态 $f[i][j]$ 的值取决于其上、左、左上三个位置的值:
- 如果 $i = 0$ 或 $j = 0$,则 $f[i][j] = 1$。
- 否则 $f[i][j] = \min(f[i-1][j-1], f[i-1][j], f[i][j-1]) + 1$。

答案为 $\sum_{i,j} f[i][j]$。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为矩阵的行数和列数。

<!-- tabs:start -->

Expand Down Expand Up @@ -133,11 +146,14 @@ public:
vector<vector<int>> f(m, vector<int>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) continue;
if (i == 0 || j == 0)
if (matrix[i][j] == 0) {
continue;
}
if (i == 0 || j == 0) {
f[i][j] = 1;
else
} else {
f[i][j] = min(f[i - 1][j - 1], min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
Expand Down Expand Up @@ -176,45 +192,115 @@ func countSquares(matrix [][]int) int {

```ts
function countSquares(matrix: number[][]): number {
const [m, n] = [matrix.length, matrix[0].length];
const f = Array.from({ length: m }, () => Array(n));
const dfs = (i: number, j: number): number => {
if (i === m || j === n || !matrix[i][j]) return 0;
f[i][j] ??= 1 + Math.min(dfs(i + 1, j), dfs(i, j + 1), dfs(i + 1, j + 1));
return f[i][j];
};
const m = matrix.length;
const n = matrix[0].length;
const f: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
let ans = 0;

for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
ans += dfs(i, j);
if (matrix[i][j] === 0) {
continue;
}
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}

return ans;
}
```

#### Rust

```rust
impl Solution {
pub fn count_squares(matrix: Vec<Vec<i32>>) -> i32 {
let m = matrix.len();
let n = matrix[0].len();
let mut f = vec![vec![0; n]; m];
let mut ans = 0;

for i in 0..m {
for j in 0..n {
if matrix[i][j] == 0 {
continue;
}
if i == 0 || j == 0 {
f[i][j] = 1;
} else {
f[i][j] = std::cmp::min(f[i - 1][j - 1], std::cmp::min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}

ans
}
}
```

#### JavaScript

```js
function countSquares(matrix) {
const [m, n] = [matrix.length, matrix[0].length];
const f = Array.from({ length: m }, () => Array(n));
const dfs = (i, j) => {
if (i === m || j === n || !matrix[i][j]) return 0;
f[i][j] ??= 1 + Math.min(dfs(i + 1, j), dfs(i, j + 1), dfs(i + 1, j + 1));
return f[i][j];
};
/**
* @param {number[][]} matrix
* @return {number}
*/
var countSquares = function (matrix) {
const m = matrix.length;
const n = matrix[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
let ans = 0;

for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
ans += dfs(i, j);
if (matrix[i][j] === 0) {
continue;
}
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}

return ans;
};
```

#### C#

```cs
public class Solution {
public int CountSquares(int[][] matrix) {
int m = matrix.Length;
int n = matrix[0].Length;
int[,] f = new int[m, n];
int ans = 0;

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
continue;
}
if (i == 0 || j == 0) {
f[i, j] = 1;
} else {
f[i, j] = Math.Min(f[i - 1, j - 1], Math.Min(f[i - 1, j], f[i, j - 1])) + 1;
}
ans += f[i, j];
}
}

return ans;
}
}
```

Expand Down
Loading
Loading