Skip to content

llama : reuse compute graphs #14482

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Jul 17, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions include/llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -1394,6 +1394,7 @@ extern "C" {

int32_t n_p_eval;
int32_t n_eval;
int32_t n_reused; // number of times a ggml compute graph had been reused
};

struct llama_perf_sampler_data {
Expand Down
115 changes: 56 additions & 59 deletions src/llama-batch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,7 @@ bool llama_batch_allocr::init(
LLAMA_LOG_DEBUG("%s: input batch info:\n", __func__);

llama_ubatch ubatch {
/*.equal_seqs =*/ false,
/*.b_equal_seqs =*/ false,
/*.n_tokens =*/ (uint32_t) batch.n_tokens,
/*.n_seq_tokens =*/ (uint32_t) 1,
/*.n_seqs =*/ (uint32_t) batch.n_tokens,
Expand All @@ -223,6 +223,7 @@ bool llama_batch_allocr::init(
/*.seq_id_unq =*/ this->seq_id_unq.data(),
/*.seq_idx =*/ this->seq_idx.data(),
/*.output =*/ batch.logits,
/*.data =*/ {},
};

ubatch_print(ubatch, debug);
Expand Down Expand Up @@ -366,39 +367,38 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
clear();
split_reset();

ubatches.emplace_back();
auto udata = std::make_shared<llama_ubatch::data_t>();

auto & ubatch = ubatches.back();

ubatch.token .resize(n_tokens);
ubatch.embd .clear();
ubatch.pos .resize(n_tokens);
ubatch.n_seq_id .resize(n_tokens);
ubatch.seq_id .resize(n_tokens);
ubatch.seq_id_unq.resize(0);
ubatch.seq_idx .resize(LLAMA_MAX_SEQ, -1);
ubatch.output .resize(n_tokens);
udata->token .resize(n_tokens);
udata->embd .clear();
udata->pos .resize(n_tokens);
udata->n_seq_id .resize(n_tokens);
udata->seq_id .resize(n_tokens);
udata->seq_id_unq.resize(0);
udata->seq_idx .resize(LLAMA_MAX_SEQ, -1);
udata->output .resize(n_tokens);

for (uint32_t s = 0; s < n_seqs; ++s) {
ubatch.seq_idx[s] = s;
ubatch.seq_id_unq.push_back(s);
udata->seq_idx[s] = s;
udata->seq_id_unq.push_back(s);
}

llama_ubatch res {
/*.equal_seqs =*/ true,
/*.b_equal_seqs =*/ true,
/*.n_tokens =*/ n_tokens,
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ n_seqs,

/*.token =*/ ubatch.token.data(),
/*.token =*/ udata->token.data(),
/*.embd =*/ nullptr,
/*.pos =*/ ubatch.pos.data(),
/*.n_seq_id =*/ ubatch.n_seq_id.data(),
/*.seq_id =*/ ubatch.seq_id.data(),
/*.seq_id_unq =*/ ubatch.seq_id_unq.data(),
/*.seq_idx =*/ ubatch.seq_idx.data(),
/*.output =*/ ubatch.output.data(),
/*.pos =*/ udata->pos.data(),
/*.n_seq_id =*/ udata->n_seq_id.data(),
/*.seq_id =*/ udata->seq_id.data(),
/*.seq_id_unq =*/ udata->seq_id_unq.data(),
/*.seq_idx =*/ udata->seq_idx.data(),
/*.output =*/ udata->output.data(),
/*.data =*/ std::move(udata),
};

return res;
Expand Down Expand Up @@ -439,8 +439,6 @@ void llama_batch_allocr::split_reset() {

used.clear();
used.resize(get_n_tokens(), false);

ubatches.clear();
}

llama_ubatch llama_batch_allocr::split_simple(uint32_t n_ubatch) {
Expand Down Expand Up @@ -655,78 +653,77 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u

assert(n_tokens%n_seqs == 0);

ubatches.emplace_back();

auto & ubatch = ubatches.back();
auto udata = std::make_shared<llama_ubatch::data_t>();

const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;

const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;

ubatch.token .resize(n_tokens);
ubatch.embd .resize(n_embd_all);
ubatch.pos .resize(n_pos_all);
ubatch.n_seq_id .resize(n_tokens);
ubatch.seq_id .resize(n_tokens);
ubatch.seq_id_unq.resize(0);
ubatch.seq_idx .resize(LLAMA_MAX_SEQ, -1);
ubatch.output .resize(n_tokens);
udata->token .resize(n_tokens);
udata->embd .resize(n_embd_all);
udata->pos .resize(n_pos_all);
udata->n_seq_id .resize(n_tokens);
udata->seq_id .resize(n_tokens);
udata->seq_id_unq.resize(0);
udata->seq_idx .resize(LLAMA_MAX_SEQ, -1);
udata->output .resize(n_tokens);

seq_set_t seq_set_unq;

for (size_t i = 0; i < idxs.size(); ++i) {
if (batch.token) {
ubatch.token[i] = batch.token[idxs[i]];
udata->token[i] = batch.token[idxs[i]];
}

if (batch.embd) {
memcpy(ubatch.embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
}

for (int j = 0; j < n_pos_cur; ++j) {
ubatch.pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
}

ubatch.n_seq_id[i] = batch.n_seq_id[idxs[i]];
ubatch.seq_id[i] = batch.seq_id[idxs[i]];
ubatch.output[i] = batch.logits[idxs[i]];
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
udata->seq_id[i] = batch.seq_id[idxs[i]];
udata->output[i] = batch.logits[idxs[i]];

for (int s = 0; s < ubatch.n_seq_id[i]; ++s) {
seq_set_unq.set(ubatch.seq_id[i][s]);
for (int s = 0; s < udata->n_seq_id[i]; ++s) {
seq_set_unq.set(udata->seq_id[i][s]);
}

if (ubatch.output[i]) {
if (udata->output[i]) {
out_ids.push_back(idxs[i]);
}
}

for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_set_unq.test(s)) {
ubatch.seq_idx[s] = ubatch.seq_id_unq.size();
ubatch.seq_id_unq.push_back(s);
udata->seq_idx[s] = udata->seq_id_unq.size();
udata->seq_id_unq.push_back(s);
}
}

llama_ubatch res {
/*.equal_seqs =*/ equal_seqs,
/*.b_equal_seqs =*/ equal_seqs,
/*.n_tokens =*/ n_tokens,
/*.n_seq_tokens =*/ n_tokens/n_seqs,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ (uint32_t) ubatch.seq_id_unq.size(),

/*.token =*/ batch.token ? ubatch.token.data() : nullptr,
/*.embd =*/ batch.embd ? ubatch.embd.data() : nullptr,
/*.pos =*/ ubatch.pos.data(),
/*.n_seq_id =*/ ubatch.n_seq_id.data(),
/*.seq_id =*/ ubatch.seq_id.data(),
/*.seq_id_unq =*/ ubatch.seq_id_unq.data(),
/*.seq_idx =*/ ubatch.seq_idx.data(),
/*.output =*/ ubatch.output.data(),
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),

/*.token =*/ batch.token ? udata->token.data() : nullptr,
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr,
/*.pos =*/ udata->pos.data(),
/*.n_seq_id =*/ udata->n_seq_id.data(),
/*.seq_id =*/ udata->seq_id.data(),
/*.seq_id_unq =*/ udata->seq_id_unq.data(),
/*.seq_idx =*/ udata->seq_idx.data(),
/*.output =*/ udata->output.data(),
/*.data =*/ std::move(udata),
};

if (debug > 0) {
LLAMA_LOG_DEBUG("%s: added ubatch %d to split:\n", __func__, (int) ubatches.size() - 1);
LLAMA_LOG_DEBUG("%s: added ubatch to split:\n", __func__);

ubatch_print(res, debug);
}
Expand All @@ -736,7 +733,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u

void llama_batch_allocr::ubatch_print(const llama_ubatch & ubatch, int debug) {
if (debug > 0) {
LLAMA_LOG_DEBUG("%s: equal_seqs = %d\n", __func__, ubatch.equal_seqs);
LLAMA_LOG_DEBUG("%s: equal_seqs = %d\n", __func__, ubatch.equal_seqs());
LLAMA_LOG_DEBUG("%s: n_tokens = %d\n", __func__, ubatch.n_tokens);
LLAMA_LOG_DEBUG("%s: n_seq_tokens = %d\n", __func__, ubatch.n_seq_tokens);
LLAMA_LOG_DEBUG("%s: n_seqs = %d\n", __func__, ubatch.n_seqs);
Expand Down
38 changes: 21 additions & 17 deletions src/llama-batch.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,17 @@
#include <vector>
#include <set>
#include <bitset>
#include <memory>
#include <unordered_map>

// keep this struct lightweight
// it points to data in `llama_batch_allocr`
struct llama_ubatch {
bool equal_seqs;
bool equal_seqs() const {
return b_equal_seqs != 0;
}

uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment
// otherwise address sanitizer complains
// TODO: whole_seqs for embeddings?

uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
Expand All @@ -34,6 +39,20 @@ struct llama_ubatch {
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id
int32_t * seq_idx; // [LLAMA_MAX_SEQ] | - | seq_idx
int8_t * output; // [n_tokens] | i | -

struct data_t {
std::vector<llama_token> token;
std::vector<float> embd;
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<llama_seq_id> seq_id_unq;
std::vector<int32_t> seq_idx;
std::vector<int8_t> output;
};

// the llama_ubatch pointers above point to this data if set. otherwise - points to non-owning data
std::shared_ptr<data_t> data;
};

// a helper for sanitizing, fulfilling and splitting a batch
Expand Down Expand Up @@ -137,20 +156,5 @@ class llama_batch_allocr {
// used[i] indicates if token i has already been used in a previous ubatch
std::vector<bool> used;

// llama_ubatch points to this data:
struct ubatch {
std::vector<llama_token> token;
std::vector<float> embd;
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<llama_seq_id> seq_id_unq;
std::vector<int32_t> seq_idx;
std::vector<int8_t> output;
};

// current splitting state:
std::vector<ubatch> ubatches;

int debug;
};
Loading
Loading