Skip to content

pmpp v2 #48

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open

pmpp v2 #48

wants to merge 10 commits into from

Conversation

S1ro1
Copy link
Collaborator

@S1ro1 S1ro1 commented Jul 17, 2025

  • Feat: grayscale
  • Feat: histogram
  • Feat: matmul
  • Prefixsum
  • Feat: sort
  • Vectoradd
  • Feat: vectoradd
  • Feat: conv2d
  • Fix: task.py
  • Feat: generate_inputs

input_tensor, kernel = data
return torch.empty((input_tensor.shape[0], input_tensor.shape[1], input_tensor.shape[2]-kernel.shape[3]+1, input_tensor.shape[3]-kernel.shape[3]+1),
device=kernel.device, dtype=kernel.dtype
input_tensor, kernel, output = data
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just return output?

input_tensor, kernel, output = data
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add test submission doing conf with tf32 / fp16; decide on whether we want this to pass or fail

@@ -4,4 +4,5 @@


def custom_kernel(data: input_t) -> output_t:
data, _output = data
return torch.empty(size=(data.shape[0], data.shape[1]), device=data.device, dtype=data.dtype)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

return _output?

@@ -3,4 +3,6 @@


def custom_kernel(data: input_t) -> output_t:
return torch.bincount(data, minlength=256)
data, output = data
output = torch.bincount(data, minlength=256)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

out=output

@@ -4,4 +4,5 @@


def custom_kernel(data: input_t) -> output_t:
data, _output = data
return torch.empty(size=(256,), device=data.device, dtype=data.dtype)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

return _output

@@ -3,4 +3,6 @@


def custom_kernel(data: input_t) -> output_t:
return torch.cumsum(data, dim=0)
output, data = data
output = torch.cumsum(data, dim=0)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

out=

@@ -4,4 +4,6 @@


def custom_kernel(data: input_t) -> output_t:
return torch.empty(size=data.shape, device=data.device, dtype=data.dtype)
data, output = data
output = torch.empty(size=data.shape, device=data.device, dtype=data.dtype)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

return output

data, output = data
output = torch.cumsum(data, dim=0)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

out=

@@ -11,37 +11,48 @@ def ref_kernel(data: input_t) -> output_t:
Returns:
Sorted tensor
"""
return torch.sort(data)[0]
data, output = data
output = torch.sort(data)[0]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

out=? is this supported?

@@ -5,7 +5,9 @@


def _custom_kernel(data: input_t) -> output_t:
return data.sum()
data, output = data
output = data.sum()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

out=

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants