Skip to content

[Wan 2.2 LoRA] add support for 2nd transformer lora loading + wan 2.2 lightx2v lora #12074

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 23 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 84 additions & 35 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1833,6 +1833,17 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
k.startswith("time_projection") and k.endswith(".weight") for k in original_state_dict
)

def get_alpha_scales(down_weight, alpha_key):
rank = down_weight.shape[0]
alpha = original_state_dict.pop(alpha_key).item()
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
return scale_down, scale_up

for key in list(original_state_dict.keys()):
if key.endswith((".diff", ".diff_b")) and "norm" in key:
# NOTE: we don't support this because norm layer diff keys are just zeroed values. We can support it
Expand All @@ -1852,15 +1863,26 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
for i in range(min_block, max_block + 1):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
original_key = f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn1.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)
alpha_key = f"blocks.{i}.self_attn.{o}.alpha"
has_alpha = alpha_key in original_state_dict
original_key_A = f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight"
converted_key_A = f"blocks.{i}.attn1.{c}.lora_A.weight"

original_key = f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn1.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)
original_key_B = f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight"
converted_key_B = f"blocks.{i}.attn1.{c}.lora_B.weight"

if has_alpha:
down_weight = original_state_dict.pop(original_key_A)
up_weight = original_state_dict.pop(original_key_B)
scale_down, scale_up = get_alpha_scales(down_weight, alpha_key)
converted_state_dict[converted_key_A] = down_weight * scale_down
converted_state_dict[converted_key_B] = up_weight * scale_up

else:
if original_key_A in original_state_dict:
converted_state_dict[converted_key_A] = original_state_dict.pop(original_key_A)
if original_key_B in original_state_dict:
converted_state_dict[converted_key_B] = original_state_dict.pop(original_key_B)

original_key = f"blocks.{i}.self_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn1.{c}.lora_B.bias"
Expand All @@ -1869,15 +1891,24 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):

# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
original_key = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)
alpha_key = f"blocks.{i}.cross_attn.{o}.alpha"
has_alpha = alpha_key in original_state_dict
original_key_A = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key_A = f"blocks.{i}.attn2.{c}.lora_A.weight"

original_key_B = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key_B = f"blocks.{i}.attn2.{c}.lora_B.weight"

if original_key_A in original_state_dict:
down_weight = original_state_dict.pop(original_key_A)
converted_state_dict[converted_key_A] = down_weight
if original_key_B in original_state_dict:
up_weight = original_state_dict.pop(original_key_B)
converted_state_dict[converted_key_B] = up_weight
if has_alpha:
scale_down, scale_up = get_alpha_scales(down_weight, alpha_key)
converted_state_dict[converted_key_A] *= scale_down
converted_state_dict[converted_key_B] *= scale_up

original_key = f"blocks.{i}.cross_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.bias"
Expand All @@ -1886,15 +1917,24 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):

if is_i2v_lora:
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
original_key = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)
alpha_key = f"blocks.{i}.cross_attn.{o}.alpha"
has_alpha = alpha_key in original_state_dict
original_key_A = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key_A = f"blocks.{i}.attn2.{c}.lora_A.weight"

original_key_B = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key_B = f"blocks.{i}.attn2.{c}.lora_B.weight"

if original_key_A in original_state_dict:
down_weight = original_state_dict.pop(original_key_A)
converted_state_dict[converted_key_A] = down_weight
if original_key_B in original_state_dict:
up_weight = original_state_dict.pop(original_key_B)
converted_state_dict[converted_key_B] = up_weight
if has_alpha:
scale_down, scale_up = get_alpha_scales(down_weight, alpha_key)
converted_state_dict[converted_key_A] *= scale_down
converted_state_dict[converted_key_B] *= scale_up

original_key = f"blocks.{i}.cross_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.bias"
Expand All @@ -1903,15 +1943,24 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):

# FFN
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]):
original_key = f"blocks.{i}.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.ffn.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.ffn.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)
alpha_key = f"blocks.{i}.{o}.alpha"
has_alpha = alpha_key in original_state_dict
original_key_A = f"blocks.{i}.{o}.{lora_down_key}.weight"
converted_key_A = f"blocks.{i}.ffn.{c}.lora_A.weight"

original_key_B = f"blocks.{i}.{o}.{lora_up_key}.weight"
converted_key_B = f"blocks.{i}.ffn.{c}.lora_B.weight"

if original_key_A in original_state_dict:
down_weight = original_state_dict.pop(original_key_A)
converted_state_dict[converted_key_A] = down_weight
if original_key_B in original_state_dict:
up_weight = original_state_dict.pop(original_key_B)
converted_state_dict[converted_key_B] = up_weight
if has_alpha:
scale_down, scale_up = get_alpha_scales(down_weight, alpha_key)
converted_state_dict[converted_key_A] *= scale_down
converted_state_dict[converted_key_B] *= scale_up

original_key = f"blocks.{i}.{o}.diff_b"
converted_key = f"blocks.{i}.ffn.{c}.lora_B.bias"
Expand Down
80 changes: 62 additions & 18 deletions src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -5270,15 +5270,37 @@ def load_lora_weights(
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
if load_into_transformer_2:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should raise in case geattr(self, "transformer_2", None) is None.

if not hasattr(self, "transformer_2"):
raise AttributeError(
f"'{type(self).__name__}' object has no attribute transformer_2"
"Note that Wan2.1 models do not have a transformer_2 component."
"Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
)
if "transformer_2" not in self._lora_loadable_modules:
self._lora_loadable_modules.append("transformer_2")
self.load_lora_into_transformer(
state_dict,
transformer=self.transformer_2,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
else:
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name)
if not hasattr(self, "transformer")
else self.transformer,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)

@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
Expand Down Expand Up @@ -5668,15 +5690,37 @@ def load_lora_weights(
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
if load_into_transformer_2:
if not hasattr(self, "transformer_2"):
raise AttributeError(
f"'{type(self).__name__}' object has no attribute transformer_2"
"Note that Wan2.1 models do not have a transformer_2 component."
"Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
)
if "transformer_2" not in self._lora_loadable_modules:
self._lora_loadable_modules.append("transformer_2")
self.load_lora_into_transformer(
state_dict,
transformer=self.transformer_2,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
else:
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name)
if not hasattr(self, "transformer")
else self.transformer,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)

@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SkyReelsV2Transformer3DModel
Expand Down
Loading