Skip to content

[model] LTX Video 0.9.8 #12095

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
93 changes: 91 additions & 2 deletions docs/source/en/api/pipelines/ltx_video.md
Original file line number Diff line number Diff line change
Expand Up @@ -254,8 +254,8 @@ export_to_video(video, "output.mp4", fps=24)
pipeline.vae.enable_tiling()

def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipeline.vae_temporal_compression_ratio)
width = width - (width % pipeline.vae_temporal_compression_ratio)
height = height - (height % pipeline.vae_spatial_compression_ratio)
width = width - (width % pipeline.vae_spatial_compression_ratio)
return height, width

prompt = """
Expand Down Expand Up @@ -325,6 +325,95 @@ export_to_video(video, "output.mp4", fps=24)

</details>

- LTX-Video 0.9.8 distilled model is similar to the 0.9.7 variant. It is guidance and timestep-distilled, and similar inference code can be used as above. An improvement of this version is that it supports generating very long videos. Additionally, it supports using tone mapping to improve the quality of the generated video using the `tone_map_compression_ratio` parameter. The default value of `0.6` is recommended.

<details>
<summary>Show example code</summary>

```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel
from diffusers.utils import export_to_video, load_video

pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.8-13B-distilled", torch_dtype=torch.bfloat16)
# TODO: Update the checkpoint here once updated in LTX org
upsampler = LTXLatentUpsamplerModel.from_pretrained("a-r-r-o-w/LTX-0.9.8-Latent-Upsampler", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline(vae=pipeline.vae, latent_upsampler=upsampler).to(torch.bfloat16)
pipeline.to("cuda")
pipe_upsample.to("cuda")
pipeline.vae.enable_tiling()

def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipeline.vae_spatial_compression_ratio)
width = width - (width % pipeline.vae_spatial_compression_ratio)
return height, width

prompt = """The camera pans over a snow-covered mountain range, revealing a vast expanse of snow-capped peaks and valleys.The mountains are covered in a thick layer of snow, with some areas appearing almost white while others have a slightly darker, almost grayish hue. The peaks are jagged and irregular, with some rising sharply into the sky while others are more rounded. The valleys are deep and narrow, with steep slopes that are also covered in snow. The trees in the foreground are mostly bare, with only a few leaves remaining on their branches. The sky is overcast, with thick clouds obscuring the sun. The overall impression is one of peace and tranquility, with the snow-covered mountains standing as a testament to the power and beauty of nature."""
# prompt = """A woman walks away from a white Jeep parked on a city street at night, then ascends a staircase and knocks on a door. The woman, wearing a dark jacket and jeans, walks away from the Jeep parked on the left side of the street, her back to the camera; she walks at a steady pace, her arms swinging slightly by her sides; the street is dimly lit, with streetlights casting pools of light on the wet pavement; a man in a dark jacket and jeans walks past the Jeep in the opposite direction; the camera follows the woman from behind as she walks up a set of stairs towards a building with a green door; she reaches the top of the stairs and turns left, continuing to walk towards the building; she reaches the door and knocks on it with her right hand; the camera remains stationary, focused on the doorway; the scene is captured in real-life footage."""
negative_prompt = "bright colors, symbols, graffiti, watermarks, worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 480, 832
downscale_factor = 2 / 3
# num_frames = 161
num_frames = 361

# 1. Generate video at smaller resolution
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames

# 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
adain_factor=1.0,
tone_map_compression_ratio=0.6,
output_type="latent"
).frames

# 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999, # Effectively, 4 inference steps out of 5
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]

# 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]

export_to_video(video, "output.mp4", fps=24)
```

</details>

- LTX-Video supports LoRAs with [`~loaders.LTXVideoLoraLoaderMixin.load_lora_weights`].

<details>
Expand Down
11 changes: 10 additions & 1 deletion scripts/convert_ltx_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,6 +369,15 @@ def get_spatial_latent_upsampler_config(version: str) -> Dict[str, Any]:
"spatial_upsample": True,
"temporal_upsample": False,
}
elif version == "0.9.8":
config = {
"in_channels": 128,
"mid_channels": 512,
"num_blocks_per_stage": 4,
"dims": 3,
"spatial_upsample": True,
"temporal_upsample": False,
}
else:
raise ValueError(f"Unsupported version: {version}")
return config
Expand Down Expand Up @@ -402,7 +411,7 @@ def get_args():
"--version",
type=str,
default="0.9.0",
choices=["0.9.0", "0.9.1", "0.9.5", "0.9.7"],
choices=["0.9.0", "0.9.1", "0.9.5", "0.9.7", "0.9.8"],
help="Version of the LTX model",
)
return parser.parse_args()
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,6 +470,7 @@
"LDMTextToImagePipeline",
"LEditsPPPipelineStableDiffusion",
"LEditsPPPipelineStableDiffusionXL",
"LTXConditionInfinitePipeline",
"LTXConditionPipeline",
"LTXImageToVideoPipeline",
"LTXLatentUpsamplePipeline",
Expand Down Expand Up @@ -1107,6 +1108,7 @@
LDMTextToImagePipeline,
LEditsPPPipelineStableDiffusion,
LEditsPPPipelineStableDiffusionXL,
LTXConditionInfinitePipeline,
LTXConditionPipeline,
LTXImageToVideoPipeline,
LTXLatentUpsamplePipeline,
Expand Down
9 changes: 8 additions & 1 deletion src/diffusers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,6 +280,7 @@
"LTXPipeline",
"LTXImageToVideoPipeline",
"LTXConditionPipeline",
"LTXConditionInfinitePipeline",
"LTXLatentUpsamplePipeline",
]
_import_structure["lumina"] = ["LuminaPipeline", "LuminaText2ImgPipeline"]
Expand Down Expand Up @@ -671,7 +672,13 @@
LEditsPPPipelineStableDiffusion,
LEditsPPPipelineStableDiffusionXL,
)
from .ltx import LTXConditionPipeline, LTXImageToVideoPipeline, LTXLatentUpsamplePipeline, LTXPipeline
from .ltx import (
LTXConditionInfinitePipeline,
LTXConditionPipeline,
LTXImageToVideoPipeline,
LTXLatentUpsamplePipeline,
LTXPipeline,
)
from .lumina import LuminaPipeline, LuminaText2ImgPipeline
from .lumina2 import Lumina2Pipeline, Lumina2Text2ImgPipeline
from .marigold import (
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/pipelines/ltx/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
_import_structure["modeling_latent_upsampler"] = ["LTXLatentUpsamplerModel"]
_import_structure["pipeline_ltx"] = ["LTXPipeline"]
_import_structure["pipeline_ltx_condition"] = ["LTXConditionPipeline"]
_import_structure["pipeline_ltx_condition_infinite"] = ["LTXConditionInfinitePipeline"]
_import_structure["pipeline_ltx_image2video"] = ["LTXImageToVideoPipeline"]
_import_structure["pipeline_ltx_latent_upsample"] = ["LTXLatentUpsamplePipeline"]

Expand All @@ -39,6 +40,7 @@
from .modeling_latent_upsampler import LTXLatentUpsamplerModel
from .pipeline_ltx import LTXPipeline
from .pipeline_ltx_condition import LTXConditionPipeline
from .pipeline_ltx_condition_infinite import LTXConditionInfinitePipeline
from .pipeline_ltx_image2video import LTXImageToVideoPipeline
from .pipeline_ltx_latent_upsample import LTXLatentUpsamplePipeline

Expand Down
Loading
Loading