-
Notifications
You must be signed in to change notification settings - Fork 14.5k
[MLIR][XeGPU] Add offset operands to load_nd/store_nd/prefetch_nd #149424
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Jianhui-Li
wants to merge
4
commits into
llvm:main
Choose a base branch
from
Jianhui-Li:load-nd-with-offsets-2
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+160
−19
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-gpu Author: Jianhui Li (Jianhui-Li) ChangesThis PR allows load_nd/store_nd/prefetch_nd to take an additional offset operand. Full diff: https://github.com/llvm/llvm-project/pull/149424.diff 3 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index 81e25f7537cb0..e9f8437d7c102 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -29,9 +29,22 @@ class XeGPU_Op<string mnemonic, list<Trait> traits = []>:
void printProperties(::mlir::MLIRContext *ctx,
::mlir::OpAsmPrinter &p, const Properties &prop,
::mlir::ArrayRef<::llvm::StringRef> elidedProps) {
- Attribute propAttr = getPropertiesAsAttr(ctx, prop);
- if (propAttr)
- p << "<" << propAttr << ">";
+
+ DictionaryAttr propAttr = dyn_cast_if_present<mlir::DictionaryAttr>(getPropertiesAsAttr(ctx, prop));
+
+ // filter out the elidedProps from propAttr, and get the resultAttr
+ mlir::SmallVector<mlir::NamedAttribute> filteredAttrs;
+ if (propAttr) {
+ for (auto namedAttr : propAttr.getValue()) {
+ if (llvm::is_contained(elidedProps, namedAttr.getName().strref()))
+ continue;
+ filteredAttrs.push_back(namedAttr);
+ }
+ }
+
+ if (!filteredAttrs.empty()) {
+ p << "<" << DictionaryAttr::get(ctx, filteredAttrs) << ">";
+ }
}
static ::mlir::ParseResult parseProperties(::mlir::OpAsmParser &parser,
@@ -288,6 +301,8 @@ def XeGPU_PrefetchNdOp : XeGPU_Op<"prefetch_nd", []> {
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+ Variadic<Index>: $offsets,
+ OptionalAttr<DenseI64ArrayAttr>: $const_offsets,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -298,7 +313,18 @@ def XeGPU_PrefetchNdOp : XeGPU_Op<"prefetch_nd", []> {
}
}];
- let assemblyFormat = "$TensorDesc prop-dict attr-dict `:` qualified(type($TensorDesc))";
+ let assemblyFormat = [{
+ $TensorDesc ``
+ custom<OptionalDynamicIndexList>($offsets, $const_offsets)
+ prop-dict attr-dict `:` qualified(type($TensorDesc))
+ }];
+
+ let builders = [
+ OpBuilder<(ins "Value": $TensorDesc,
+ "xegpu::CachePolicyAttr": $l1_hint,
+ "xegpu::CachePolicyAttr": $l2_hint,
+ "xegpu::CachePolicyAttr": $l3_hint)>
+ ];
let hasVerifier = 1;
}
@@ -343,6 +369,8 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+ Variadic<Index>: $offsets,
+ OptionalAttr<DenseI64ArrayAttr>: $const_offsets,
OptionalAttr<UnitAttr>: $packed,
OptionalAttr<DenseI64ArrayAttr>: $transpose,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
@@ -361,7 +389,20 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
}
}];
- let assemblyFormat = "$TensorDesc prop-dict attr-dict `:` qualified(type($TensorDesc)) `->` type($value)";
+ let assemblyFormat = [{
+ $TensorDesc ``
+ custom<OptionalDynamicIndexList>($offsets, $const_offsets)
+ prop-dict attr-dict `:` qualified(type($TensorDesc)) `->` type($value)
+ }];
+
+ let builders = [
+ OpBuilder<(ins "Type": $value, "Value": $TensorDesc,
+ "UnitAttr": $packed, "DenseI64ArrayAttr": $transpose,
+ "xegpu::CachePolicyAttr": $l1_hint,
+ "xegpu::CachePolicyAttr": $l2_hint,
+ "xegpu::CachePolicyAttr": $l3_hint)>
+ ];
+
let hasVerifier = 1;
}
@@ -400,6 +441,8 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", [
let arguments = (ins XeGPU_ValueType: $value,
XeGPU_TensorDesc: $TensorDesc,
+ Variadic<Index>: $offsets,
+ OptionalAttr<DenseI64ArrayAttr>: $const_offsets,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -414,8 +457,21 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", [
}
}];
- let assemblyFormat = [{$value `,` $TensorDesc prop-dict attr-dict
- `:` type($value) `,` qualified(type($TensorDesc))}];
+ let assemblyFormat = [{
+ $value `,`
+ $TensorDesc ``
+ custom<OptionalDynamicIndexList>($offsets, $const_offsets)
+ prop-dict attr-dict `:` type($value) `,` qualified(type($TensorDesc))
+ }];
+
+ let builders = [
+ OpBuilder<(ins "Value": $value, "Value": $TensorDesc,
+ "xegpu::CachePolicyAttr": $l1_hint,
+ "xegpu::CachePolicyAttr": $l2_hint,
+ "xegpu::CachePolicyAttr": $l3_hint)>
+ ];
+
+
let hasVerifier = 1;
}
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 78cbf884a1911..7cb105bf4292d 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -329,18 +329,30 @@ ParseResult parseOptionalDynamicIndexList(
return success();
}
-void printOptionalDynamicIndexList(
- OpAsmPrinter &printer, Operation *op, OperandRange values,
- ArrayRef<int64_t> integers, TypeRange valueTypes = TypeRange(),
- AsmParser::Delimiter delimiter = AsmParser::Delimiter::Square) {
+void printOptionalDynamicIndexList(OpAsmPrinter &printer, Operation *op,
+ OperandRange values,
+ DenseI64ArrayAttr integers) {
+
+ if (!integers)
+ return;
return printDynamicIndexList(printer, op, values, integers,
- /*scalableFlags=*/{}, valueTypes, delimiter);
+ /*scalableFlags=*/{}, {},
+ AsmParser::Delimiter::Square);
}
-
//===----------------------------------------------------------------------===//
// XeGPU_PrefetchNdOp
//===----------------------------------------------------------------------===//
+
+void PrefetchNdOp::build(OpBuilder &builder, OperationState &state,
+ Value tensorDesc, xegpu::CachePolicyAttr l1_hint,
+ xegpu::CachePolicyAttr l2_hint,
+ xegpu::CachePolicyAttr l3_hint) {
+
+ return build(builder, state, tensorDesc, ValueRange(), DenseI64ArrayAttr(),
+ l1_hint, l2_hint, l3_hint);
+}
+
LogicalResult PrefetchNdOp::verify() {
auto tdescTy = getTensorDescType();
if (tdescTy.isScattered())
@@ -361,6 +373,19 @@ LogicalResult PrefetchNdOp::verify() {
//===----------------------------------------------------------------------===//
// XeGPU_LoadNdOp
//===----------------------------------------------------------------------===//
+
+void LoadNdOp::build(OpBuilder &builder, OperationState &state, Type retType,
+ Value tensorDesc, UnitAttr packed,
+ DenseI64ArrayAttr transpose,
+ xegpu::CachePolicyAttr l1_hint,
+ xegpu::CachePolicyAttr l2_hint,
+ xegpu::CachePolicyAttr l3_hint) {
+
+ return build(builder, state, retType, tensorDesc, ValueRange(),
+ DenseI64ArrayAttr(), packed, transpose, l1_hint, l2_hint,
+ l3_hint);
+}
+
LogicalResult LoadNdOp::verify() {
auto tdescTy = getTensorDescType();
auto valueTy = getType();
@@ -448,6 +473,16 @@ LogicalResult LoadNdOp::verify() {
//===----------------------------------------------------------------------===//
// XeGPU_StoreNdOp
//===----------------------------------------------------------------------===//
+
+void StoreNdOp::build(OpBuilder &builder, OperationState &state, Value value,
+ Value tensorDesc, xegpu::CachePolicyAttr l1_hint,
+ xegpu::CachePolicyAttr l2_hint,
+ xegpu::CachePolicyAttr l3_hint) {
+
+ return build(builder, state, value, tensorDesc, ValueRange(),
+ DenseI64ArrayAttr(), l1_hint, l2_hint, l3_hint);
+}
+
LogicalResult StoreNdOp::verify() {
auto dstTy = getTensorDescType(); // Tile
auto valTy = getValueType(); // Vector
diff --git a/mlir/test/Dialect/XeGPU/ops.mlir b/mlir/test/Dialect/XeGPU/ops.mlir
index 695437354cd7c..a1028a8e8a2f3 100644
--- a/mlir/test/Dialect/XeGPU/ops.mlir
+++ b/mlir/test/Dialect/XeGPU/ops.mlir
@@ -121,6 +121,15 @@ gpu.func @prefetch_nd_2(%src: memref<8x24x32x48x64xf16>) {
gpu.return
}
+// CHECK: gpu.func @prefetch_nd_offset_1(%[[arg0:.*]]: memref<8x24x32x48x64xf16>) {
+gpu.func @prefetch_nd_offset_1(%src: memref<8x24x32x48x64xf16>) {
+ // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0, 0, 0, 0] : memref<8x24x32x48x64xf16> -> !xegpu.tensor_desc<1x2x4x8x16xf16>
+ %1 = xegpu.create_nd_tdesc %src[0, 0, 0, 0, 0] : memref<8x24x32x48x64xf16> -> !xegpu.tensor_desc<1x2x4x8x16xf16>
+ // CHECK: xegpu.prefetch_nd %[[R0]][0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<1x2x4x8x16xf16>
+ xegpu.prefetch_nd %1[0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<1x2x4x8x16xf16>
+ gpu.return
+}
+
// CHECK: func @subgroup_load_nd(%[[arg0:.*]]: memref<8x16xf16>) {
gpu.func @subgroup_load_nd(%src: memref<8x16xf16>) {
// CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16>
@@ -260,6 +269,15 @@ gpu.func @subgroup_load_nd_8(%src: memref<24x32xf32>) {
gpu.return
}
+// CHECK: func @subgroup_load_nd_offset_1(%[[arg0:.*]]: memref<24x32xf32>) {
+gpu.func @subgroup_load_nd_offset_1(%src: memref<24x32xf32>) {
+ // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32>
+ %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32>
+ // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]][0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32> -> vector<8x16xf32>
+ %2 = xegpu.load_nd %1[0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32> -> vector<8x16xf32>
+ gpu.return
+}
+
// CHECK: func @simt_load_nd_8(%[[arg0:.*]]: memref<24x32xf32>) {
gpu.func @simt_load_nd_8(%src: memref<24x32xf32>) {
// CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32>
@@ -269,6 +287,16 @@ gpu.func @simt_load_nd_8(%src: memref<24x32xf32>) {
gpu.return
}
+
+// CHECK: func @simt_load_nd_offset_1(%[[arg0:.*]]: memref<24x32xf32>) {
+gpu.func @simt_load_nd_offset_1(%src: memref<24x32xf32>) {
+ // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32>
+ %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32>
+ // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]][0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32> -> vector<8xf32>
+ %2 = xegpu.load_nd %1[0, 0] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32> -> vector<8xf32>
+ gpu.return
+}
+
// CHECK: func @subgroup_store_nd(%[[arg0:.*]]: memref<24x32xf16>) {
gpu.func @subgroup_store_nd(%dst: memref<24x32xf16>) {
// CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<24x32xf16>
@@ -293,6 +321,17 @@ gpu.func @simt_store_nd(%src: memref<24x32xf16>) {
// CHECK: func @subgroup_store_nd_2(%[[arg0:.*]]: memref<24x32xf16>) {
gpu.func @subgroup_store_nd_2(%dst: memref<24x32xf16>) {
+ // CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<32xf16>
+ %1 = arith.constant dense<1.0>: vector<32xf16>
+ // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16>
+ %2 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16>
+ // CHECK: xegpu.store_nd %[[C]], %[[R0]][0] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<32xf16>, !xegpu.tensor_desc<32xf16>
+ xegpu.store_nd %1, %2[0] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<32xf16>, !xegpu.tensor_desc<32xf16>
+ gpu.return
+}
+
+// CHECK: func @subgroup_store_nd_offset_1(%[[arg0:.*]]: memref<24x32xf16>) {
+gpu.func @subgroup_store_nd_offset_1(%dst: memref<24x32xf16>) {
// CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<32xf16>
%1 = arith.constant dense<1.0>: vector<32xf16>
// CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16>
@@ -313,6 +352,17 @@ gpu.func @simt_store_nd_2(%src: memref<24x32xf16>) {
gpu.return
}
+// CHECK: func @simt_store_nd_offset_1(%[[arg0:.*]]: memref<24x32xf16>) {
+gpu.func @simt_store_nd_offset_1(%src: memref<24x32xf16>) {
+ // CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<2xf16>
+ %1 = arith.constant dense<1.0>: vector<2xf16>
+ // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16>
+ %2 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16>
+ // CHECK: xegpu.store_nd %[[C]], %[[R0]][0] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<2xf16>, !xegpu.tensor_desc<32xf16>
+ xegpu.store_nd %1, %2[0] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<2xf16>, !xegpu.tensor_desc<32xf16>
+ gpu.return
+}
+
// CHECK: gpu.func @update_nd_tdesc(%[[arg0:.*]]: memref<24x32xf32>) {
gpu.func @update_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR allows load_nd/store_nd/prefetch_nd to take an additional offset operand.
It is based on this PR #148335.
Now user can create a nd_tdesc with no offset, and instead set the offset with the load_nd operation.