-
Notifications
You must be signed in to change notification settings - Fork 14.6k
[mlir][linalg] Fix padding shape computation in PadTilingInterface for convs #149576
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
a0b980a
01f2f3a
79e5629
735085a
8b22d7e
f494302
3676d4d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -55,6 +55,28 @@ getFullRankPaddingSizes(Builder &b, ArrayRef<OpFoldResult> indexingSizes, | |
return paddingSizes; | ||
} | ||
|
||
/// Extracts the constant multiplier from an affine expression of the form | ||
/// `d * c` or `c * d`, where `d` is an AffineDimExpr and `c` is an | ||
/// AffineConstantExpr. Returns 1 if the expression is not a simple | ||
/// multiplication of a dimension and a constant. | ||
static int64_t extractConstantMultiplier(AffineExpr expr) { | ||
if (auto binOp = dyn_cast<AffineBinaryOpExpr>(expr)) { | ||
if (binOp.getKind() == AffineExprKind::Mul) { | ||
auto lhsD = dyn_cast<AffineDimExpr>(binOp.getLHS()); | ||
auto rhsC = dyn_cast<AffineConstantExpr>(binOp.getRHS()); | ||
if (lhsD && rhsC) { | ||
return rhsC.getValue(); | ||
} | ||
auto lhsC = dyn_cast<AffineConstantExpr>(binOp.getLHS()); | ||
auto rhsD = dyn_cast<AffineDimExpr>(binOp.getRHS()); | ||
if (lhsC && rhsD) { | ||
return lhsC.getValue(); | ||
} | ||
} | ||
} | ||
return 1; | ||
} | ||
|
||
/// Compute the padded shape of the given value `v` of `RankedTensorType` given | ||
/// - `indexingSizes` a list of OpFoldResult. | ||
/// - an `indexingMap` that encodes how the shape of varies with increases | ||
|
@@ -63,6 +85,13 @@ getFullRankPaddingSizes(Builder &b, ArrayRef<OpFoldResult> indexingSizes, | |
/// The `indexingMap` + `indexingSizes` encoding suits StructuredOps. | ||
/// The implementaiton below iteratively combines increases from contributing | ||
/// dimensions using affine.apply operations. | ||
/// The padded shape is computed by evaluating the maximum accessed index per | ||
/// dimension, which may involve multiplying by constant factors derived from | ||
/// the affine indexing expressions. Currently, only a limited set of projected | ||
/// permutation indexing maps are supported, such as | ||
/// - affine_map<(d0, d1, d2) -> (d0, d1)> | ||
/// - affine_map<(d0, d1, d2) -> (d0, d1 + d2)> | ||
/// - affine_map<(d0, d1) -> (d0 * 3 + d1)> | ||
/// In the future, more general interfaces can be devised to encode similar | ||
/// shape evolutions and map between an op and its operands. | ||
SmallVector<OpFoldResult> linalg::computePaddedShape( | ||
|
@@ -114,24 +143,33 @@ SmallVector<OpFoldResult> linalg::computePaddedShape( | |
/*compressDims=*/true); | ||
|
||
// If we are padding to the next multiple of, compose with ceil(sz) * sz. | ||
OpFoldResult paddingDimOfr; | ||
if (options.padToMultipleOf) { | ||
AffineExpr d0, s0; | ||
bindDims(rewriter.getContext(), d0); | ||
bindSymbols(rewriter.getContext(), s0); | ||
AffineMap ceilMap = AffineMap::get(1, 1, d0.ceilDiv(s0) * s0); | ||
AffineMap composedMap = projectedMap.compose(ceilMap); | ||
OpFoldResult paddingDimOfr = affine::makeComposedFoldedAffineApply( | ||
paddingDimOfr = affine::makeComposedFoldedAffineApply( | ||
rewriter, loc, composedMap, | ||
{indexingSizes[paddingDim], paddingSize}, | ||
/*composeAffineMin=*/true); | ||
terms.push_back(paddingDimOfr); | ||
} else { | ||
// Otherwise just set to paddingSize. | ||
OpFoldResult paddingDimOfr = affine::makeComposedFoldedAffineApply( | ||
paddingDimOfr = affine::makeComposedFoldedAffineApply( | ||
rewriter, loc, projectedMap, paddingSize); | ||
terms.push_back(paddingDimOfr); | ||
} | ||
|
||
// Adjust for the maximum accessed index, which is (paddingSize - 1) * | ||
// multiplier. | ||
AffineExpr d0; | ||
bindDims(rewriter.getContext(), d0); | ||
int64_t multiplier = extractConstantMultiplier(projectedMap.getResult(0)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This seems unnecessary and duplicating the work of AffineExpr, why do we need to extract the constant here? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I agree this is limited. This is for convolutions with non-unit strides or dilations, so for the affine map such as (d0 * stride + d1), the correct range size should be |
||
AffineMap subtractMap = AffineMap::get(1, 0, d0 - multiplier); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The comments etc should be updated to talk about half-open and closed intervals to justify this change. |
||
OpFoldResult maxAccessIdx = affine::makeComposedFoldedAffineApply( | ||
rewriter, loc, subtractMap, {paddingDimOfr}); | ||
terms.push_back(maxAccessIdx); | ||
|
||
LLVM_DEBUG(DBGS() << "------new term: " << terms.back() << "\n"); | ||
} | ||
|
||
|
@@ -148,8 +186,9 @@ SmallVector<OpFoldResult> linalg::computePaddedShape( | |
AffineExpr sumExpr = dims.front(); | ||
for (unsigned i = 1; i < dims.size(); ++i) | ||
sumExpr = sumExpr + dims[i]; | ||
OpFoldResult paddedDimOfr = | ||
affine::makeComposedFoldedAffineApply(rewriter, loc, sumExpr, terms); | ||
// Add 1 to the maximum accessed index and get the final padded size. | ||
OpFoldResult paddedDimOfr = affine::makeComposedFoldedAffineApply( | ||
rewriter, loc, sumExpr + 1, terms); | ||
paddedShape[resultIndex] = paddedDimOfr; | ||
} | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -52,22 +52,22 @@ module { | |
|
||
// CHECK-LABEL: @generic | ||
// CHECK-SAME: %[[T0:.*]]: tensor<7x5xf32>, | ||
// CHECK-SAME: %[[T1:.*]]: tensor<7x11x12xf32>) | ||
func.func @generic(%arg0: tensor<7x5xf32>, %arg1: tensor<7x11x12xf32>) -> tensor<7x11x12xf32> { | ||
// CHECK-SAME: %[[T1:.*]]: tensor<7x11x11xf32>) | ||
func.func @generic(%arg0: tensor<7x5xf32>, %arg1: tensor<7x11x11xf32>) -> tensor<7x11x11xf32> { | ||
|
||
// CHECK-DAG: %[[CST:.*]] = arith.constant 0. | ||
|
||
// CHECK: %[[PAD0:.*]] = tensor.pad %[[T0]] low[0, 0] high[2, 0] | ||
// CHECK: : tensor<7x5xf32> to tensor<9x5xf32> | ||
// CHECK: %[[PAD1:.*]] = tensor.pad %[[T1]] low[0, 0, 0] high[2, 4, 2] { | ||
// CHECK: : tensor<7x11x12xf32> to tensor<9x15x14xf32> | ||
// CHECK: : tensor<7x11x11xf32> to tensor<9x15x13xf32> | ||
// CHECK-NEXT: linalg.generic | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [7, 11, 12] [1, 1, 1] : tensor<9x15x14xf32> to tensor<7x11x12xf32> | ||
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<7x5xf32>) outs(%arg1 : tensor<7x11x12xf32>) { | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [7, 11, 11] [1, 1, 1] : tensor<9x15x13xf32> to tensor<7x11x11xf32> | ||
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<7x5xf32>) outs(%arg1 : tensor<7x11x11xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
linalg.yield %in : f32 | ||
} -> tensor<7x11x12xf32> | ||
return %0 : tensor<7x11x12xf32> | ||
Comment on lines
-55
to
-70
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why was this changed? |
||
} -> tensor<7x11x11xf32> | ||
return %0 : tensor<7x11x11xf32> | ||
} | ||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { | ||
|
@@ -83,7 +83,7 @@ module { | |
// ----- | ||
|
||
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0, s1] -> (-s1 + (s0 ceildiv 3) * 3)> | ||
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (-s1 + (s0 ceildiv 3) * 3 + 5)> | ||
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (-s1 + (s0 ceildiv 3) * 3 + 4)> | ||
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<()[s0] -> (s0 + 5)> | ||
|
||
#map = affine_map<(d0, d1, d2) -> (d0, d1)> | ||
|
@@ -272,3 +272,136 @@ module attributes {transform.with_named_sequence} { | |
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: pad_conv | ||
func.func @pad_conv(%arg0: tensor<1x16x16x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> { | ||
|
||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 2, 12] | ||
// CHECK: : tensor<1x16x16x4xf32> to tensor<1x16x18x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 0, 12] | ||
// CHECK: : tensor<16x3x3x4xf32> to tensor<16x3x3x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 2, 0] | ||
// CHECK: : tensor<1x14x14x16xf32> to tensor<1x14x16x16xf32> | ||
// CHECK-NEXT: linalg.conv_2d_nhwc_fhwc | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0, 0] [1, 14, 14, 16] [1, 1, 1, 1] : tensor<1x14x16x16xf32> to tensor<1x14x14x16xf32> | ||
|
||
%0 = linalg.conv_2d_nhwc_fhwc | ||
{dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } | ||
ins(%arg0, %arg1: tensor<1x16x16x4xf32>, tensor<16x3x3x4xf32>) | ||
outs(%arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> | ||
return %0 : tensor<1x14x14x16xf32> | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%padded, %pad = transform.structured.pad_tiling_interface %0 to padding_sizes [0, 0, 16, 0, 0, 0, 16] pad_to_multiple_of { | ||
padding_values = [0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32] | ||
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | ||
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0, s1] -> (-s1 + (s0 ceildiv 16) * 16 + 2)> | ||
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (-s1 + (s0 ceildiv 16) * 16)> | ||
|
||
// CHECK-LABEL: pad_conv_dynamic | ||
func.func @pad_conv_dynamic(%arg0: tensor<1x16x?x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<1x14x?x16xf32>) -> tensor<1x14x?x16xf32> { | ||
|
||
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index | ||
// CHECK: %[[D0_0:.*]] = tensor.dim %{{.*}}, %[[C2]] : tensor<1x14x?x16xf32> | ||
// CHECK: %[[D0_1:.*]] = tensor.dim %{{.*}}, %[[C2]] : tensor<1x16x?x4xf32> | ||
// CHECK: %[[H0:.*]] = affine.apply #[[$MAP0]]()[%[[D0_0]], %[[D0_1]]] | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, %[[H0]], 12] | ||
// CHECK: : tensor<1x16x?x4xf32> to tensor<1x16x?x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 0, 12] | ||
// CHECK: : tensor<16x3x3x4xf32> to tensor<16x3x3x16xf32> | ||
// CHECK: %[[D1_0:.*]] = tensor.dim %{{.*}}, %[[C2]] : tensor<1x14x?x16xf32> | ||
// CHECK: %[[H1:.*]] = affine.apply #[[$MAP1]]()[%[[D0_0]], %[[D1_0]]] | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, %[[H1]], 0] | ||
// CHECK: : tensor<1x14x?x16xf32> to tensor<1x14x?x16xf32> | ||
// CHECK: %[[D2_0:.*]] = tensor.dim %{{.*}}, %[[C2]] : tensor<1x14x?x16xf32> | ||
// CHECK-NEXT: linalg.conv_2d_nhwc_fhwc | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0, 0] [1, 14, %[[D2_0]], 16] [1, 1, 1, 1] : tensor<1x14x?x16xf32> to tensor<1x14x?x16xf32> | ||
|
||
%0 = linalg.conv_2d_nhwc_fhwc | ||
{dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } | ||
ins(%arg0, %arg1: tensor<1x16x?x4xf32>, tensor<16x3x3x4xf32>) | ||
outs(%arg2: tensor<1x14x?x16xf32>) -> tensor<1x14x?x16xf32> | ||
return %0 : tensor<1x14x?x16xf32> | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%padded, %pad = transform.structured.pad_tiling_interface %0 to padding_sizes [0, 0, 16, 0, 0, 0, 16] pad_to_multiple_of { | ||
padding_values = [0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32] | ||
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | ||
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: pad_conv_strided | ||
func.func @pad_conv_strided(%arg0: tensor<1x42x42x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> { | ||
|
||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 6, 12] | ||
// CHECK: : tensor<1x42x42x4xf32> to tensor<1x42x48x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 0, 12] | ||
// CHECK: : tensor<16x3x3x4xf32> to tensor<16x3x3x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 2, 0] | ||
// CHECK: : tensor<1x14x14x16xf32> to tensor<1x14x16x16xf32> | ||
// CHECK-NEXT: linalg.conv_2d_nhwc_fhwc | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0, 0] [1, 14, 14, 16] [1, 1, 1, 1] : tensor<1x14x16x16xf32> to tensor<1x14x14x16xf32> | ||
|
||
%0 = linalg.conv_2d_nhwc_fhwc | ||
{dilations = dense<1> : tensor<2xi64>, strides = dense<3> : tensor<2xi64> } | ||
ins(%arg0, %arg1: tensor<1x42x42x4xf32>, tensor<16x3x3x4xf32>) | ||
outs(%arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> | ||
return %0 : tensor<1x14x14x16xf32> | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%padded, %pad = transform.structured.pad_tiling_interface %0 to padding_sizes [0, 0, 16, 0, 0, 0, 16] pad_to_multiple_of { | ||
padding_values = [0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32] | ||
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | ||
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: pad_conv_dilated | ||
func.func @pad_conv_dilated(%arg0: tensor<1x18x18x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> { | ||
|
||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 2, 12] | ||
// CHECK: : tensor<1x18x18x4xf32> to tensor<1x18x20x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 0, 12] | ||
// CHECK: : tensor<16x3x3x4xf32> to tensor<16x3x3x16xf32> | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0, 0] high[0, 0, 2, 0] | ||
// CHECK: : tensor<1x14x14x16xf32> to tensor<1x14x16x16xf32> | ||
// CHECK-NEXT: linalg.conv_2d_nhwc_fhwc | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0, 0] [1, 14, 14, 16] [1, 1, 1, 1] : tensor<1x14x16x16xf32> to tensor<1x14x14x16xf32> | ||
|
||
%0 = linalg.conv_2d_nhwc_fhwc | ||
{dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } | ||
ins(%arg0, %arg1: tensor<1x18x18x4xf32>, tensor<16x3x3x4xf32>) | ||
outs(%arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> | ||
return %0 : tensor<1x14x14x16xf32> | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%padded, %pad = transform.structured.pad_tiling_interface %0 to padding_sizes [0, 0, 16, 0, 0, 0, 16] pad_to_multiple_of { | ||
padding_values = [0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32, 0.0 : f32] | ||
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | ||
transform.yield | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -69,22 +69,22 @@ module { | |
|
||
// CHECK-LABEL: @generic | ||
// CHECK-SAME: %[[T0:.*]]: tensor<7x5xf32>, | ||
// CHECK-SAME: %[[T1:.*]]: tensor<7x11x12xf32>) | ||
func.func @generic(%arg0: tensor<7x5xf32>, %arg1: tensor<7x11x12xf32>) -> tensor<7x11x12xf32> { | ||
// CHECK-SAME: %[[T1:.*]]: tensor<7x11x11xf32>) | ||
func.func @generic(%arg0: tensor<7x5xf32>, %arg1: tensor<7x11x11xf32>) -> tensor<7x11x11xf32> { | ||
|
||
// CHECK-DAG: %[[CST:.*]] = arith.constant 0. | ||
|
||
// CHECK: %[[PAD0:.*]] = tensor.pad %[[T0]] low[0, 0] high[1, 0] | ||
// CHECK: : tensor<7x5xf32> to tensor<8x5xf32> | ||
// CHECK: %[[PAD1:.*]] = tensor.pad %[[T1]] low[0, 0, 0] high[1, 3, 1] { | ||
// CHECK: : tensor<7x11x12xf32> to tensor<8x14x13xf32> | ||
// CHECK: : tensor<7x11x11xf32> to tensor<8x14x12xf32> | ||
// CHECK-NEXT: linalg.generic | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [7, 11, 12] [1, 1, 1] : tensor<8x14x13xf32> to tensor<7x11x12xf32> | ||
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<7x5xf32>) outs(%arg1 : tensor<7x11x12xf32>) { | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [7, 11, 11] [1, 1, 1] : tensor<8x14x12xf32> to tensor<7x11x11xf32> | ||
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<7x5xf32>) outs(%arg1 : tensor<7x11x11xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
linalg.yield %in : f32 | ||
} -> tensor<7x11x12xf32> | ||
return %0 : tensor<7x11x12xf32> | ||
Comment on lines
-72
to
-87
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why were these test inputs changed? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please refer to the explanation below. I think this test is similar to the convolution case that the final shape after (d0 + d1) mapping might be wrong. |
||
} -> tensor<7x11x11xf32> | ||
return %0 : tensor<7x11x11xf32> | ||
} | ||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { | ||
|
@@ -102,7 +102,7 @@ module { | |
|
||
|
||
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0] -> (-s0 + 8)> | ||
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0] -> (-s0 + 13)> | ||
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0] -> (-s0 + 12)> | ||
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<()[s0] -> (s0 + 5)> | ||
|
||
#map = affine_map<(d0, d1, d2) -> (d0, d1)> | ||
|
@@ -127,13 +127,13 @@ module { | |
// CHECK: %[[D2_0:.*]] = tensor.dim %{{.*}}, %[[C2]] : tensor<?x11x?xf32> | ||
// CHECK: %[[H2:.*]] = affine.apply #[[$MAP1]]()[%[[D2_0]]] | ||
// CHECK: tensor.pad %{{.*}} low[0, 0, 0] high[%[[H1]], 3, %[[H2]]] { | ||
// CHECK: : tensor<?x11x?xf32> to tensor<8x14x13xf32> | ||
// CHECK: : tensor<?x11x?xf32> to tensor<8x14x12xf32> | ||
// | ||
// CHECK: %[[D0_2:.*]] = tensor.dim %{{.*}}, %[[C0]] : tensor<?x5xf32> | ||
// CHECK: %[[D2_1:.*]] = affine.apply #[[$MAP2]]()[%[[D0_2]]] | ||
// CHECK: linalg.generic {{.*}} ins(%{{.*}} : tensor<8x5xf32>) outs(%{{.*}} : tensor<8x14x13xf32>) { | ||
// CHECK: } -> tensor<8x14x13xf32> | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [%[[D0_2]], 11, %[[D2_1]]] [1, 1, 1] : tensor<8x14x13xf32> to tensor<?x11x?xf32> | ||
// CHECK: linalg.generic {{.*}} ins(%{{.*}} : tensor<8x5xf32>) outs(%{{.*}} : tensor<8x14x12xf32>) { | ||
// CHECK: } -> tensor<8x14x12xf32> | ||
// CHECK: tensor.extract_slice %{{.*}}[0, 0, 0] [%[[D0_2]], 11, %[[D2_1]]] [1, 1, 1] : tensor<8x14x12xf32> to tensor<?x11x?xf32> | ||
// | ||
%0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<?x5xf32>) outs(%arg1 : tensor<?x11x?xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should talk about intervals (half-open, closed), ranges and assumptions (i.e. that indexingSizes are exclusive upper bounds).