-
Notifications
You must be signed in to change notification settings - Fork 71
testing autoquant #114
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: gh/HDCharles/4/base
Are you sure you want to change the base?
testing autoquant #114
Conversation
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: ac0ddc1 Pull Request resolved: #114
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: a9134d6 Pull Request resolved: #114
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL (meta-pytorch/segment-anything-fast#114, huggingface/diffusion-fast@176e85f) Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL (meta-pytorch/segment-anything-fast#114, huggingface/diffusion-fast@176e85f) Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3986099 Pull Request resolved: #38
Summary: improves runtime by 19.70 -> 19.76 img/sec ❯ one sh run.sh 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00, 6.14s/it] sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00, 6.70s/it] vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164 shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157 shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365 shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353 shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827 shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> <class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 <class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186 <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017 shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 0%| | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.) return _nested.nested_tensor( 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00, 2.12s/it] vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None Test Plan: Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: improves runtime by 19.70 -> 19.76 img/sec Test Plan: sh run.sh Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 0dbb2ff Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: fddbaf2 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: f268031 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f7 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f7 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 94089f7 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3768385 Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3c1199d Pull Request resolved: #38
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983) [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: ghstack-source-id: 3c1199d Pull Request resolved: #81
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Summary: Adding autoquantization functionality, using hte do_quant api we can test kernel speeds and pick the best quantization type (or no quantization) for each layer. Test Plan: python test/test.py -k "autoquant" also tested on SAM and SDXL meta-pytorch/segment-anything-fast#114 HDCharles/sdxl-fast@8d9942a Reviewers: Subscribers: Tasks: Tags: [ghstack-poisoned]
Hi @HDCharles! Thank you for your pull request. We require contributors to sign our Contributor License Agreement, and yours needs attention. You currently have a record in our system, but the CLA is no longer valid, and will need to be resubmitted. ProcessIn order for us to review and merge your suggested changes, please sign at https://code.facebook.com/cla. If you are contributing on behalf of someone else (eg your employer), the individual CLA may not be sufficient and your employer may need to sign the corporate CLA. Once the CLA is signed, our tooling will perform checks and validations. Afterwards, the pull request will be tagged with If you have received this in error or have any questions, please contact us at [email protected]. Thanks! |
Stack from ghstack (oldest at bottom):
Summary:
improves runtime by 19.70 -> 19.76 img/sec
Test Plan: sh run.sh
Reviewers:
Subscribers:
Tasks:
Tags: