Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 61 additions & 8 deletions lpips/pretrained_networks.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,20 @@
from collections import namedtuple
from packaging import version
import torch
import torchvision
from torchvision import models as tv

class squeezenet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(squeezenet, self).__init__()
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
pretrained_features = tv.squeezenet1_1(weights=tv.SqueezeNet1_1_Weights.IMAGENET1K_V1).features
else:
pretrained_features = tv.squeezenet1_1(weights=None).features
else: #torchvision.__version__ < 0.13
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features

self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
Expand Down Expand Up @@ -56,7 +65,14 @@ def forward(self, X):
class alexnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(alexnet, self).__init__()
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
alexnet_pretrained_features = tv.alexnet(weights=tv.AlexNet_Weights.IMAGENET1K_V1).features
else:
alexnet_pretrained_features = tv.alexnet(weights=None).features
else: # torchvision.__version__ < 0.13
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features

self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
Expand Down Expand Up @@ -96,7 +112,14 @@ def forward(self, X):
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(vgg16, self).__init__()
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
vgg_pretrained_features = tv.vgg16(weights=tv.VGG16_Weights.IMAGENET1K_V1).features
else:
vgg_pretrained_features = tv.vgg16(weights=None).features
else: # torchvision.__version__ < 0.13
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features

self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
Expand Down Expand Up @@ -139,15 +162,45 @@ class resnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if(num==18):
self.net = tv.resnet18(pretrained=pretrained)
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
self.net = tv.resnet18(weights=tv.ResNet18_Weights.IMAGENET1K_V1)
else:
self.net = tv.resnet18(weights=None)
else: # torchvision.__version__ < 0.13
self.net = tv.resnet18(pretrained=pretrained)
elif(num==34):
self.net = tv.resnet34(pretrained=pretrained)
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
self.net = tv.resnet34(weights=tv.ResNet34_Weights.IMAGENET1K_V1)
else:
self.net = tv.resnet34(weights=None)
else: # torchvision.__version__ < 0.13
self.net = tv.resnet34(pretrained=pretrained)
elif(num==50):
self.net = tv.resnet50(pretrained=pretrained)
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
self.net = tv.resnet50(weights=tv.ResNet50_Weights.IMAGENET1K_V1)
else:
self.net = tv.resnet50(weights=None)
else: # torchvision.__version__ < 0.13
self.net = tv.resnet50(pretrained=pretrained)
elif(num==101):
self.net = tv.resnet101(pretrained=pretrained)
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
self.net = tv.resnet101(weights=tv.ResNet101_Weights.IMAGENET1K_V1)
else:
self.net = tv.resnet101(weights=None)
else: # torchvision.__version__ < 0.13
self.net = tv.resnet101(pretrained=pretrained)
elif(num==152):
self.net = tv.resnet152(pretrained=pretrained)
if version.parse(torchvision.__version__) >= version.parse('0.13'):
if pretrained:
self.net = tv.resnet152(weights=tv.ResNet152_Weights.IMAGENET1K_V1)
else:
self.net = tv.resnet152(weights=None)
else: # torchvision.__version__ < 0.13
self.net = tv.resnet152(pretrained=pretrained)
self.N_slices = 5

self.conv1 = self.net.conv1
Expand Down