Skip to content

stfc/quantum-neo-dynamics

Repository files navigation

Density-map

arXiv GitHub Release Python Language Visitors Github License DOI

🧪 Quantum NEO Dynamics

A repository to accompany the paper Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors.

Authors: Arseny Kovyrshin, Dilhan Manawadu, Edoardo Altamura, George Pennington, Benjamin Jaderberg, Sebastian Brandhofer, Anton Nykänen, Aaron Miller, Walter Talarico, Stefan Knecht, Fabijan Pavošević, Alberto Baiardi, Francesco Tacchino, Ivano Tavernelli, Stefano Mensa, Jason Crain, Lars Tornberg, Anders Broo

This repository provides:

  • Quantum circuits and Hamiltonians modelling proton transfer dynamics as described in the paper.
  • Sample Python scripts to perform simulations.
  • Results and data supporting the findings in the paper.

📁 Directory structure

.
├── data
│   ├── backends
│   │   └── ibm_fez_*.properties.json
│   ├── circ
│   │   ├── aqc
│   │   │   └── aqc-*.qpy
│   │   ├── product
│   │   │   └── product-*.qpy
│   │   └── vqe
│   │       └── vqe-*.qpy
│   ├── ham
│   │   └── hamiltonian_*.json
│   └── targets
│       └── ibm_fez_*.target.pkl
├── figures
│   ├── fig*.py
│   └── fig*.pdf
├── qneo.py
├── qpu_submit.py
├── quantum_neo_dynamics
│   ├── decoder.py
│   └── paths.py
├── README.md
├── requirements.txt
├── results
│   ├── statevector_data.json
│   └── ZNE.csv
└── save-noise-models.py

🛠️ Installation

To set up the project locally, follow these steps:

  1. Clone the repository:
    git clone https://github.com/stfc/quantum-neo-dynamics.git
    cd quantum-neo-dynamics
  2. Create a virtual environment using Python 3.11:
    python3.11 -m venv venv
    
  3. Activate the virtual environment: -On Linux/macOS
    source venv/bin/activate
    
    -On Windows
    venv\Scripts\activate
    
  4. Install the required dependencies
    pip install -r requirements.txt
    

🚀 Running simulations

Statevector simulations

  • To run the main programme, make sure you have Python installed and the required dependencies set up (see the Installation section). Then, to perform statevector simulations, execute qneo.py as
python qneo.py -m <method> -a <approximation> -s <state>

Noisy simulations

  • To perform simulations with device noise models, execute qneo.py with the arguments
python qneo.py -m <method>  -a <approximation> -s <state> -b 1 -t <target> -p <props> -nsf <noisescalefactor> -ns <numshots>
  • target and props are found in data/targets and data/backends respectively. Custom noise models can be generated by executing save-noise-models.py as
python save-noise-models.py -y <year> -m <month> -d <day> -H <hour> -M <minutes> -S <seconds>

[Experimental] Hardware experiments

  • To perform experiments on IBM quantum processors, run the script qpu_submit.py by executing
python qpu_submit.py

👥 Authors

Note

If you use this repository or its data in your work, we kindly request you to cite our paper with the following bibtex handle (CITATION.bib):

@ARTICLE{2025arXiv250708996K,  
  author = {{Kovyrshin}, Arseny and {Manawadu}, Dilhan and {Altamura}, Edoardo and {Pennington}, George and {Jaderberg}, Benjamin and {Brandhofer}, Sebastian and {Nyk{\"a}nen}, Anton and {Miller}, Aaron and {Talarico}, Walter and {Knecht}, Stefan and {Pavo{\v{s}}evi{\'c}}, Fabijan and {Baiardi}, Alberto and {Tacchino}, Francesco and {Tavernelli}, Ivano and {Mensa}, Stefano and {Crain}, Jason and {Tornberg}, Lars and {Broo}, Anders},  
  title = "{Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors}",  
  journal = {arXiv e-prints},  
  year = 2025,  
  month = jul,  
  eprint = {2507.08996},  
  archivePrefix = {arXiv},  
  primaryClass = {quant-ph},
adsurl = {https://ui.adsabs.harvard.edu/abs/2025arXiv250708996K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

🕒 Version History

  • v0.1 - Initial Release

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •