-
Notifications
You must be signed in to change notification settings - Fork 140
Image postprocessor #720
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jonpsy
wants to merge
19
commits into
tensorflow:master
Choose a base branch
from
jonpsy:image_postprocessor
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Image postprocessor #720
Changes from 4 commits
Commits
Show all changes
19 commits
Select commit
Hold shift + click to select a range
3b41352
init push
jonpsy 0344650
Write main logic.
jonpsy 99e709d
build file updated
jonpsy 7c766c3
format file
jonpsy 4cdbbf8
Use "is_input bool to switch input/output.
jonpsy 2a39596
Preprocessor use new API
jonpsy ed455cb
single index instead of multi
jonpsy ae93793
Re-use logic from BuildImageTensorSpecs
jonpsy e24ef95
move in unknwn namespace
jonpsy f4b1607
move has_uint8_output_ to init()
jonpsy 5236b8b
Use populate vector & rm size checks
jonpsy 31c2b31
Pass tensor & metato tensor_spec. rm tensor count.
jonpsy 213acb0
GetTensorMetada() checks subgraph of given meta
jonpsy 9cdcb04
NormProcessUnit check in postprocessor to fallback
jonpsy 352fcdb
store output tensor instead of its type.
jonpsy d1fa720
Remove is_input from image_tensor_specs.h
jonpsy 63846f8
update BuildImageTensorSpec for preprocessor.
jonpsy 8d9dc30
Fix compile error
jonpsy da766a4
Fix namespace
jonpsy File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
237 changes: 237 additions & 0 deletions
237
tensorflow_lite_support/cc/task/processor/image_postprocessor.cc
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "tensorflow_lite_support/cc/task/processor/image_postprocessor.h" | ||
|
||
namespace tflite { | ||
namespace task { | ||
namespace processor { | ||
|
||
namespace { | ||
|
||
using ::absl::StatusCode; | ||
using ::tflite::metadata::ModelMetadataExtractor; | ||
using ::tflite::support::CreateStatusWithPayload; | ||
using ::tflite::support::StatusOr; | ||
using ::tflite::support::TfLiteSupportStatus; | ||
|
||
StatusOr<absl::optional<vision::NormalizationOptions>> | ||
GetNormalizationOptionsIfAny(const TensorMetadata& tensor_metadata) { | ||
ASSIGN_OR_RETURN( | ||
const tflite::ProcessUnit* normalization_process_unit, | ||
ModelMetadataExtractor::FindFirstProcessUnit( | ||
tensor_metadata, tflite::ProcessUnitOptions_NormalizationOptions)); | ||
if (normalization_process_unit == nullptr) { | ||
return {absl::nullopt}; | ||
} | ||
const tflite::NormalizationOptions* tf_normalization_options = | ||
normalization_process_unit->options_as_NormalizationOptions(); | ||
const auto mean_values = tf_normalization_options->mean(); | ||
const auto std_values = tf_normalization_options->std(); | ||
if (mean_values->size() != std_values->size()) { | ||
return CreateStatusWithPayload( | ||
StatusCode::kInvalidArgument, | ||
absl::StrCat("NormalizationOptions: expected mean and std of same " | ||
"dimension, got ", | ||
mean_values->size(), " and ", std_values->size(), "."), | ||
TfLiteSupportStatus::kMetadataInvalidProcessUnitsError); | ||
} | ||
absl::optional<vision::NormalizationOptions> normalization_options; | ||
if (mean_values->size() == 1) { | ||
normalization_options = vision::NormalizationOptions{ | ||
.mean_values = {mean_values->Get(0), mean_values->Get(0), | ||
mean_values->Get(0)}, | ||
.std_values = {std_values->Get(0), std_values->Get(0), | ||
std_values->Get(0)}, | ||
.num_values = 1}; | ||
} else if (mean_values->size() == 3) { | ||
normalization_options = vision::NormalizationOptions{ | ||
.mean_values = {mean_values->Get(0), mean_values->Get(1), | ||
mean_values->Get(2)}, | ||
.std_values = {std_values->Get(0), std_values->Get(1), | ||
std_values->Get(2)}, | ||
.num_values = 3}; | ||
} else { | ||
return CreateStatusWithPayload( | ||
StatusCode::kInvalidArgument, | ||
absl::StrCat("NormalizationOptions: only 1 or 3 mean and std " | ||
"values are supported, got ", | ||
mean_values->size(), "."), | ||
TfLiteSupportStatus::kMetadataInvalidProcessUnitsError); | ||
} | ||
return normalization_options; | ||
} | ||
} // namespace | ||
|
||
/* static */ | ||
tflite::support::StatusOr<std::unique_ptr<ImagePostprocessor>> | ||
ImagePostprocessor::Create(core::TfLiteEngine* engine, | ||
const std::initializer_list<int> output_indices, | ||
const std::initializer_list<int> input_indices) { | ||
ASSIGN_OR_RETURN(auto processor, | ||
Processor::Create<ImagePostprocessor>( | ||
/* num_expected_tensors = */ 1, engine, output_indices, | ||
/* requires_metadata = */ false)); | ||
|
||
RETURN_IF_ERROR(processor->Init(input_indices)); | ||
return processor; | ||
} | ||
|
||
absl::Status ImagePostprocessor::Init(const std::vector<int> &input_indices) { | ||
if (core::TfLiteEngine::OutputCount(engine_->interpreter()) != 1) { | ||
return tflite::support::CreateStatusWithPayload( | ||
absl::StatusCode::kInvalidArgument, | ||
absl::StrFormat( | ||
"Image segmentation models are expected to have only 1 " | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
"output, found %d", | ||
core::TfLiteEngine::OutputCount(engine_->interpreter())), | ||
tflite::support::TfLiteSupportStatus::kInvalidNumOutputTensorsError); | ||
} | ||
|
||
if (GetTensor()->type != kTfLiteUInt8 && | ||
GetTensor()->type != kTfLiteFloat32) { | ||
return tflite::support::CreateStatusWithPayload( | ||
absl::StatusCode::kInvalidArgument, | ||
absl::StrFormat("Type mismatch for output tensor %s. Requested one " | ||
"of these types: " | ||
"kTfLiteUint8/kTfLiteFloat32, got %s.", | ||
GetTensor()->name, | ||
TfLiteTypeGetName(GetTensor()->type)), | ||
tflite::support::TfLiteSupportStatus::kInvalidOutputTensorTypeError); | ||
} | ||
|
||
if (GetTensor()->dims->data[0] != 1 || GetTensor()->dims->data[3] != 3) { | ||
return CreateStatusWithPayload( | ||
absl::StatusCode::kInvalidArgument, | ||
absl::StrCat("The input tensor should have dimensions 1 x height x " | ||
"width x 3. Got ", | ||
GetTensor()->dims->data[0], " x ", | ||
GetTensor()->dims->data[1], " x ", | ||
GetTensor()->dims->data[2], " x ", | ||
GetTensor()->dims->data[3], "."), | ||
tflite::support::TfLiteSupportStatus:: | ||
kInvalidInputTensorDimensionsError); | ||
} | ||
|
||
// Gather metadata | ||
const tflite::TensorMetadata* output_metadata = | ||
engine_->metadata_extractor()->GetOutputTensorMetadata( | ||
tensor_indices_.at(0)); | ||
const tflite::TensorMetadata* input_metadata = | ||
engine_->metadata_extractor()->GetInputTensorMetadata( | ||
input_indices.at(0)); | ||
|
||
// Use input metadata for normalization as fallback. | ||
const tflite::TensorMetadata* processing_metadata = | ||
GetNormalizationOptionsIfAny(*output_metadata).value().has_value() | ||
? output_metadata | ||
: input_metadata; | ||
|
||
absl::optional<vision::NormalizationOptions> normalization_options; | ||
ASSIGN_OR_RETURN(normalization_options, | ||
GetNormalizationOptionsIfAny(*processing_metadata)); | ||
|
||
|
||
if (GetTensor()->type == kTfLiteFloat32) { | ||
if (!normalization_options.has_value()) { | ||
return CreateStatusWithPayload( | ||
absl::StatusCode::kNotFound, | ||
"Output tensor has type kTfLiteFloat32: it requires specifying " | ||
"NormalizationOptions metadata to preprocess output images.", | ||
TfLiteSupportStatus::kMetadataMissingNormalizationOptionsError); | ||
} else if (GetTensor()->bytes / sizeof(float) % | ||
normalization_options.value().num_values != | ||
0) { | ||
return CreateStatusWithPayload( | ||
StatusCode::kInvalidArgument, | ||
"The number of elements in the output tensor must be a multiple of " | ||
"the number of normalization parameters.", | ||
TfLiteSupportStatus::kInvalidArgumentError); | ||
} | ||
|
||
options_ = std::make_unique<vision::NormalizationOptions>( | ||
normalization_options.value()); | ||
} | ||
|
||
return absl::OkStatus(); | ||
} | ||
|
||
absl::StatusOr<vision::FrameBuffer> ImagePostprocessor::Postprocess() { | ||
has_uint8_outputs_ = GetTensor()->type == kTfLiteUInt8; | ||
const int kRgbPixelBytes = 3; | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
||
vision::FrameBuffer::Dimension to_buffer_dimension = { | ||
GetTensor()->dims->data[2], GetTensor()->dims->data[1]}; | ||
size_t output_byte_size = | ||
GetBufferByteSize(to_buffer_dimension, vision::FrameBuffer::Format::kRGB); | ||
std::vector<uint8> postprocessed_data(output_byte_size / sizeof(uint8), 0); | ||
|
||
if (has_uint8_outputs_) { // No denormalization required. | ||
if (GetTensor()->bytes != output_byte_size) { | ||
return tflite::support::CreateStatusWithPayload( | ||
absl::StatusCode::kInternal, | ||
"Size mismatch or unsupported padding bytes between pixel data " | ||
"and output tensor."); | ||
} | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
const uint8* output_data = | ||
core::AssertAndReturnTypedTensor<uint8>(GetTensor()).value(); | ||
postprocessed_data.insert(postprocessed_data.begin(), &output_data[0], | ||
&output_data[output_byte_size / sizeof(uint8)]); | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
} else { // Denormalize to [0, 255] range. | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
if (GetTensor()->bytes / sizeof(float) != | ||
output_byte_size / sizeof(uint8)) { | ||
return tflite::support::CreateStatusWithPayload( | ||
absl::StatusCode::kInternal, | ||
"Size mismatch or unsupported padding bytes between pixel data " | ||
"and output tensor."); | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
} | ||
|
||
uint8* denormalized_output_data = postprocessed_data.data(); | ||
const float* output_data = | ||
core::AssertAndReturnTypedTensor<float>(GetTensor()).value(); | ||
const auto norm_options = GetNormalizationOptions(); | ||
|
||
if (norm_options.num_values == 1) { | ||
jonpsy marked this conversation as resolved.
Show resolved
Hide resolved
|
||
float mean_value = norm_options.mean_values[0]; | ||
float std_value = norm_options.std_values[0]; | ||
|
||
for (size_t i = 0; i < output_byte_size / sizeof(uint8); | ||
++i, ++denormalized_output_data, ++output_data) { | ||
*denormalized_output_data = static_cast<uint8>(std::round(std::min( | ||
255.f, std::max(0.f, (*output_data) * std_value + mean_value)))); | ||
} | ||
} else { | ||
for (size_t i = 0; i < output_byte_size / sizeof(uint8); | ||
++i, ++denormalized_output_data, ++output_data) { | ||
*denormalized_output_data = static_cast<uint8>(std::round(std::min( | ||
255.f, | ||
std::max(0.f, (*output_data) * norm_options.std_values[i % 3] + | ||
norm_options.mean_values[i % 3])))); | ||
} | ||
} | ||
} | ||
|
||
vision::FrameBuffer::Plane postprocessed_plane = { | ||
/*buffer=*/postprocessed_data.data(), | ||
/*stride=*/{GetTensor()->dims->data[2] * kRgbPixelBytes, kRgbPixelBytes}}; | ||
auto postprocessed_frame_buffer = | ||
vision::FrameBuffer::Create({postprocessed_plane}, to_buffer_dimension, | ||
vision::FrameBuffer::Format::kRGB, | ||
vision::FrameBuffer::Orientation::kTopLeft); | ||
return *postprocessed_frame_buffer.get(); | ||
} | ||
|
||
} // namespace processor | ||
} // namespace task | ||
} // namespace tflite |
70 changes: 70 additions & 0 deletions
70
tensorflow_lite_support/cc/task/processor/image_postprocessor.h
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either exPostss or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifndef TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_ | ||
#define TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_ | ||
|
||
#include "tensorflow_lite_support/cc/port/status_macros.h" | ||
#include "tensorflow_lite_support/cc/task/processor/processor.h" | ||
#include "tensorflow_lite_support/cc/task/vision/core/frame_buffer.h" | ||
#include "tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.h" | ||
#include "tensorflow_lite_support/cc/task/core/task_utils.h" | ||
#include "tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.h" | ||
|
||
namespace tflite { | ||
namespace task { | ||
namespace processor { | ||
|
||
// Process the associated output image tensor and convert it to a FrameBuffer. | ||
// Requirement for the output tensor: | ||
// (kTfLiteUInt8/kTfLiteFloat32) | ||
// - image input of size `[batch x height x width x channels]`. | ||
// - batch inference is not supported (`batch` is required to be 1). | ||
// - only RGB inputs are supported (`channels` is required to be 3). | ||
// - if type is kTfLiteFloat32, NormalizationOptions are required to be | ||
// attached to the metadata for output de-normalization. Uses input metadata | ||
// as fallback in case output metadata isn't provided. | ||
class ImagePostprocessor : public Postprocessor { | ||
public: | ||
static tflite::support::StatusOr<std::unique_ptr<ImagePostprocessor>> | ||
Create(core::TfLiteEngine* engine, | ||
const std::initializer_list<int> output_indices, | ||
const std::initializer_list<int> input_indices); | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
||
// Processes the output tensor to an RGB of FrameBuffer type. | ||
// If output tensor is of type kTfLiteFloat32, denormalize it into [0 - 255] | ||
// via normalization parameters. | ||
absl::StatusOr<vision::FrameBuffer> Postprocess(); | ||
|
||
private: | ||
using Postprocessor::Postprocessor; | ||
|
||
// Whether the model features quantized inference type (QUANTIZED_UINT8). This | ||
// is currently detected by checking if all output tensors data type is uint8. | ||
jonpsy marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
bool has_uint8_outputs_; | ||
|
||
std::unique_ptr<vision::NormalizationOptions> options_; | ||
|
||
absl::Status Init(const std::vector<int>& input_indices); | ||
|
||
const vision::NormalizationOptions& GetNormalizationOptions() { | ||
return *options_.get(); | ||
} | ||
}; | ||
} // namespace processor | ||
} // namespace task | ||
} // namespace tflite | ||
|
||
#endif // TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_ |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.