Skip to content

Extract and convert data from any document, images, pdfs, word doc, ppt or URL into multiple formats (Markdown, JSON, CSV, HTML) with intelligent content extraction and advanced OCR.

License

Notifications You must be signed in to change notification settings

thomasbergersen/docstrange

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DocStrange Banner

DocStrange

PyPI version Python PyPI Downloads GitHub stars GitHub forks License: MIT Platform Maintenance

☁️ Free Cloud Processing!
Extract documents data instantly with the cloud processing - no setup or api key needed for getting started.

🔒 Local Processing Available!
Use cpu or gpu mode for 100% local processing - no data sent anywhere, everything stays on your machine.

Extract and convert data from any document, images, pdfs, word doc, ppt or URL into multiple formats (Markdown, JSON, CSV, HTML) with intelligent content extraction and advanced OCR.

DocStrange Demo

Key Features

  • ☁️ Cloud Processing (Default): Instant free conversion with cloud API - no local setup needed
  • 🔒 Local Processing: CPU/GPU options for complete privacy - no data sent anywhere
  • Universal Input: PDFs, Word docs, Excel, PowerPoint, images, URLs, and raw text
  • Smart Output: Markdown, JSON, CSV, HTML, and plain text formats
  • LLM-Optimized: Clean, structured output perfect for AI processing
  • Intelligent Extraction: Extract specific fields or structured data using AI
  • Advanced OCR: Multiple OCR engines with automatic fallback
  • Table Processing: Accurate table extraction and formatting
  • Image Handling: Extract text from images and visual content
  • URL Processing: Direct conversion from web pages

Installation

pip install docstrange

Quick Start

1. Convert Document to Markdown

from docstrange import DocumentExtractor

# Initialize extractor (cloud mode by default)
extractor = DocumentExtractor()

# Convert any document to clean markdown
result = extractor.extract("document.pdf")
markdown = result.extract_markdown()
print(markdown)

2. Extract All Important Information as JSON

from docstrange import DocumentExtractor

# Extract document as structured JSON
extractor = DocumentExtractor()
result = extractor.extract("document.pdf")

# Get all important data as flat JSON
json_data = result.extract_data()
print(json_data)

3. Extract Specific Fields

from docstrange import DocumentExtractor

# Extract only the fields you need
extractor = DocumentExtractor()
result = extractor.extract("invoice.pdf")

# Specify exactly which fields to extract
fields = result.extract_data(specified_fields=[
    "invoice_number", "total_amount", "vendor_name", "due_date"
])
print(fields)

4. Extract with Custom JSON Schema

from docstrange import DocumentExtractor

# Extract data conforming to your schema
extractor = DocumentExtractor()
result = extractor.extract("contract.pdf")

# Define your required structure
schema = {
    "contract_number": "string",
    "parties": ["string"],
    "total_value": "number",
    "start_date": "string",
    "terms": ["string"]
}

structured_data = result.extract_data(json_schema=schema)
print(structured_data)

Local Processing

# Force local CPU processing
extractor = DocumentExtractor(cpu=True)

# Force local GPU processing (requires CUDA)
extractor = DocumentExtractor(gpu=True)

Output Formats

  • Markdown: Clean, LLM-friendly format with preserved structure
  • JSON: Structured data with metadata and intelligent parsing
  • HTML: Formatted output with styling and layout
  • CSV: Extract tables and data in spreadsheet format
  • Text: Plain text with smart formatting

Examples

Convert Multiple File Types

from docstrange import DocumentExtractor

extractor = DocumentExtractor()

# PDF document
pdf_result = extractor.extract("report.pdf")
print(pdf_result.extract_markdown())

# Word document  
docx_result = extractor.extract("document.docx")
print(docx_result.extract_data())

# Excel spreadsheet
excel_result = extractor.extract("data.xlsx")
print(excel_result.extract_csv())

# PowerPoint presentation
pptx_result = extractor.extract("slides.pptx")
print(pptx_result.extract_html())

# Image with text
image_result = extractor.extract("screenshot.png")
print(image_result.extract_text())

# Web page
url_result = extractor.extract("https://example.com")
print(url_result.extract_markdown())

Extract Tables to CSV

# Extract all tables from a document
result = extractor.extract("financial_report.pdf")
csv_data = result.extract_csv()
print(csv_data)

Requirements for enhanced JSON (if using cpu=True):

  • Install: pip install 'docstrange[local-llm]'
  • Install Ollama and run: ollama serve
  • Pull a model: ollama pull llama3.2

If Ollama is not available, the library automatically falls back to the standard JSON parser.

Extract Specific Fields & Structured Data

# Extract specific fields from any document
result = extractor.extract("invoice.pdf")

# Method 1: Extract specific fields
extracted = result.extract_data(specified_fields=[
    "invoice_number", 
    "total_amount", 
    "vendor_name",
    "due_date"
])

# Method 2: Extract using JSON schema
schema = {
    "invoice_number": "string",
    "total_amount": "number", 
    "vendor_name": "string",
    "line_items": [{
        "description": "string",
        "amount": "number"
    }]
}

structured = result.extract_data(json_schema=schema)

Cloud Mode Usage Examples:

from docstrange import DocumentExtractor

# Default cloud mode (rate-limited without API key)
extractor = DocumentExtractor()

# With API key for increased rate limit access
extractor = DocumentExtractor(api_key="your_api_key_here")

# Extract specific fields from invoice
result = extractor.extract("invoice.pdf")

# Extract key invoice information
invoice_fields = result.extract_data(specified_fields=[
    "invoice_number",
    "total_amount", 
    "vendor_name",
    "due_date",
    "items_count"
])

print("Extracted Invoice Fields:")
print(invoice_fields)
# Output: {"extracted_fields": {"invoice_number": "INV-001", ...}, "format": "specified_fields"}

# Extract structured data using schema
invoice_schema = {
    "invoice_number": "string",
    "total_amount": "number",
    "vendor_name": "string",
    "billing_address": {
        "street": "string",
        "city": "string", 
        "zip_code": "string"
    },
    "line_items": [{
        "description": "string",
        "quantity": "number",
        "unit_price": "number",
        "total": "number"
    }],
    "taxes": {
        "tax_rate": "number",
        "tax_amount": "number"
    }
}

structured_invoice = result.extract_data(json_schema=invoice_schema)
print("Structured Invoice Data:")
print(structured_invoice)
# Output: {"structured_data": {...}, "schema": {...}, "format": "structured_json"}

# Extract from different document types
receipt = extractor.extract("receipt.jpg")
receipt_data = receipt.extract_data(specified_fields=[
    "merchant_name", "total_amount", "date", "payment_method"
])

contract = extractor.extract("contract.pdf") 
contract_schema = {
    "parties": [{
        "name": "string",
        "role": "string"
    }],
    "contract_value": "number",
    "start_date": "string",
    "end_date": "string",
    "key_terms": ["string"]
}
contract_data = contract.extract_data(json_schema=contract_schema)

Local extraction requirements (if using cpu=True):

  • Install ollama package: pip install 'docstrange[local-llm]'
  • Install Ollama and run: ollama serve
  • Pull a model: ollama pull llama3.2

Chain with LLM

# Perfect for LLM workflows
document_text = extractor.extract("research_paper.pdf").extract_markdown()

# Use with any LLM
response = your_llm_client.chat(
    messages=[{
        "role": "user", 
        "content": f"Summarize this research paper:\n\n{document_text}"
    }]
)

Rate Limits

DocStrange offers free cloud processing with rate limits to ensure fair usage:

Free Tier (No API Key)

  • Rate Limit: Moderate usage restrictions apply
  • Access: All output formats (Markdown, JSON, CSV, HTML)
  • Setup: Zero configuration - works immediately

Increased Rate Limits (With API Key)

  • Rate Limit: Higher limits for production use
  • Setup: Get your free API key from app.nanonets.com
  • Usage: Pass API key during initialization
# Free tier usage
extractor = DocumentExtractor()

# Increased rate limits with API key
extractor = DocumentExtractor(api_key="your_api_key_here")

💡 Tip: Start with the free tier to test functionality, then get an API key for production workloads or higher volume processing.

Command Line Interface

# Basic conversion (cloud mode default)
docstrange document.pdf

# With API key for increased rate limit access
docstrange document.pdf --api-key YOUR_API_KEY

# Local processing modes
docstrange document.pdf --cpu-mode
docstrange document.pdf --gpu-mode

# Different output formats
docstrange document.pdf --output json
docstrange document.pdf --output html
docstrange document.pdf --output csv

# Extract specific fields
docstrange invoice.pdf --output json --extract-fields invoice_number total_amount

# Extract with JSON schema
docstrange document.pdf --output json --json-schema schema.json

# Multiple files
docstrange *.pdf --output markdown

# Save to file
docstrange document.pdf --output-file result.md

# Comprehensive field extraction examples
docstrange invoice.pdf --output json --extract-fields invoice_number vendor_name total_amount due_date line_items

# Extract from different document types with specific fields
docstrange receipt.jpg --output json --extract-fields merchant_name total_amount date payment_method

docstrange contract.pdf --output json --extract-fields parties contract_value start_date end_date

# Using JSON schema files for structured extraction
docstrange invoice.pdf --output json --json-schema invoice_schema.json
docstrange contract.pdf --output json --json-schema contract_schema.json

# Combine with API key for increased rate limit access
docstrange document.pdf --api-key YOUR_API_KEY --output json --extract-fields title author date summary

# Force local processing with field extraction (requires Ollama)
docstrange document.pdf --cpu-mode --output json --extract-fields key_points conclusions recommendations

Example schema.json file:

{
  "invoice_number": "string",
  "total_amount": "number",
  "vendor_name": "string",
  "billing_address": {
    "street": "string",
    "city": "string",
    "zip_code": "string"
  },
  "line_items": [{
    "description": "string",
    "quantity": "number",
    "unit_price": "number"
  }]
}

API Reference for library

DocumentExtractor

DocumentExtractor(
    api_key: str = None,              # free API key for increased rate limit on cloud access
    model: str = None,                # Model for cloud processing ("gemini", "openapi", "nanonets")
    cpu: bool = False,     # Force local CPU processing
    gpu: bool = False      # Force local GPU processing
)

ConversionResult Methods

result.extract_markdown() -> str                    # Clean markdown output
result.extract_data(                              # Structured JSON
    specified_fields: List[str] = None,       # Extract specific fields
    json_schema: Dict = None                  # Extract with schema
) -> Dict
result.extract_html() -> str                      # Formatted HTML
result.extract_csv() -> str                       # CSV format for tables
result.extract_text() -> str                      # Plain text

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support


Star this repo if you find it helpful! Your support helps us improve the library.

About

Extract and convert data from any document, images, pdfs, word doc, ppt or URL into multiple formats (Markdown, JSON, CSV, HTML) with intelligent content extraction and advanced OCR.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%