Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 28 additions & 13 deletions python/tutorials/09-persistent-matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,16 +31,29 @@

from typing import Optional

if torch.cuda.is_available():

def is_cuda():
return triton.runtime.driver.active.get_current_target().backend == "cuda"


def is_hip():
return triton.runtime.driver.active.get_current_target().backend == "hip"


if is_cuda():
from triton._C.libtriton import nvidia
cublas_workspace = torch.empty(32 * 1024 * 1024, device="cuda", dtype=torch.uint8)
cublas = nvidia.cublas.CublasLt(cublas_workspace)
device_workspace = torch.empty(32 * 1024 * 1024, device="cuda", dtype=torch.uint8)
device_blas = nvidia.cublas.CublasLt(device_workspace)
elif is_hip():
from triton._C.libtriton import amd
device_workspace = torch.empty(32 * 1024 * 1024, device="cuda", dtype=torch.uint8)
device_blas = amd.hipblas.HipblasLt(device_workspace)
else:
cublas = None
device_blas = None


def is_cuda():
return triton.runtime.driver.active.get_current_target().backend == "cuda"
def device_blas_name():
return 'cuBLAS' if is_cuda() else 'hipBLAS'


def supports_tma():
Expand Down Expand Up @@ -592,7 +605,7 @@ def alloc_fn(size: int, alignment: int, stream: Optional[int]):
return c


def cublas_matmul(a, b):
def device_blas_matmul(a, b):
# Check constraints.
assert a.shape[1] == b.shape[1], "Incompatible dimensions" # b is transposed
M, K = a.shape
Expand All @@ -601,9 +614,10 @@ def cublas_matmul(a, b):
c = torch.empty((M, N), device=a.device, dtype=dtype)
bytes_per_elem = a.element_size()
flops_str = f"flops{bytes_per_elem * 8}"
with proton.scope(f"cublas [M={M}, N={N}, K={K}]",
blas_name = device_blas_name()
with proton.scope(f"{blas_name} [M={M}, N={N}, K={K}]",
{"bytes": bytes_per_elem * (M * K + N * K + M * N), flops_str: 2. * M * N * K}):
cublas.matmul(a, b, c)
device_blas.matmul(a, b, c)
return c


Expand Down Expand Up @@ -645,8 +659,9 @@ def bench(K, dtype, reps=10000, warmup_reps=10000):

b = b.T.contiguous()

if cublas is not None:
bench_fn("cublas", reps, warmup_reps, cublas_matmul, a, b)
if device_blas is not None:
blas_name = device_blas_name()
bench_fn(blas_name, reps, warmup_reps, device_blas_matmul, a, b)
if dtype == torch.float16:
bench_fn("torch", reps, warmup_reps, torch_matmul, a, b)
bench_fn("naive", reps, warmup_reps, matmul, a, b.T)
Expand Down Expand Up @@ -682,7 +697,7 @@ def validate(M, N, K, dtype):

naive_result = matmul(a, b.T).to(torch.float16)
run_test(naive_result, torch_matmul, a, b, "Torch", enabled=dtype == torch.float16)
run_test(naive_result, cublas_matmul, a, b, "cuBLAS", enabled=cublas is not None)
run_test(naive_result, device_blas_matmul, a, b, device_blas_name(), enabled=device_blas is not None)
run_test(naive_result, matmul_persistent, a, b.T, "Persistent")

kernels = [
Expand Down Expand Up @@ -722,7 +737,7 @@ def show_profile(precision, profile_name):
args = parser.parse_args()

if args.prec == 'fp8' and (not hasattr(torch, "float8_e4m3fn") or not is_cuda()):
print("This example requires CUDA with fp8 support.")
print("This example requires CUDA/HIP with fp8 support.")
else:
dtype = torch.float8_e4m3fn if args.prec == 'fp8' else torch.float16

Expand Down
Loading