Skip to content

AdityaEXP/ComicFinder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

23 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 ComicFinder

ComicFinder is an AI-powered content-based recommendation system built using Python and OpenAI Embeddings. It helps users discover semantically similar manga, manhwa, manhua, and webtoons based on natural language descriptions, genres, or titles β€” ideal for fans seeking personalized recommendations beyond keyword search.

ComicFinder Preview: Streamlit interface for manga recommendation


πŸ’» Live Demo Of Comic Finder

https://comicfinder.streamlit.app/


πŸš€ Features Of Comic Finder

  • πŸ” Recommends similar manga/manhwa/manhua/webtoon based on descriptions or titles
  • πŸ“¦ Utilizes precomputed clean_embeddings.npy for fast results
  • 🧠 Embedding generation using OPENAI embeddings api
  • ⚑ Fast cosine similarity search for real-time recommendation
  • πŸ–₯️ Clean Streamlit-based frontend
  • πŸ“ Organized data and scripts for easy retraining or extension

πŸ“ Project Structure

comic-recommender/
β”œβ”€β”€ app.py                       # Main application script
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ data.csv                 # Original manhwa dataset
β”‚   β”œβ”€β”€ clean_data.csv           # Cleaned and preprocessed data
β”‚   └── clean_embeddings.npy     # (Ignored from Git, must be downloaded separately)
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ clean_dataset.py         # Data cleaning script
β”‚   β”œβ”€β”€ generate_embeddings.py   # Embedding generation
β”‚   └── recommend.py             # Similarity-based recommendations but CLI version
β”œβ”€β”€ .env                         # Store API keys 
β”œβ”€β”€ requirements.txt             # Python dependencies
└── README.md                    # You're here!

πŸ”§ How to Install and Run ComicFinder Locally

git clone https://github.com/AdityaEXP/ComicFinder.git
cd ComicFinder

# Optional: Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

pip install -r requirements.txt
streamlit run .\app.py

πŸ“Œ Example Use Cases

  • Find romance manhwa similar to What's Wrong with Secretary Kim?
  • Get fantasy webtoon recommendations with strong male leads
  • Discover hidden manga gems with character development arcs
  • Replace genre filters with AI-powered natural language queries

πŸ“₯ Download Embedding File

Since clean_embeddings.npy is large, it’s not included in this repo. πŸ“¦ Download clean_embeddings.npy Or you can also generate the clean_embeddings.npy using your own openai api key it will cost around $0.02 per generation


πŸ” Environment Variables

Create a .env file for your OpenAI API Key

OPENAIKEY=sk-xxxxxx

πŸ“œ License

MIT β€” free to use, modify, and distribute.


🀝 Author

Aditya πŸ› οΈ AI + Python + Web3 Enthusiast


πŸ“š Dataset Source and Preprocessing

This project uses data inspired by or adapted from the following Kaggle dataset:

πŸ“Š Kaggle - Manhwa and Webtoon Dataset
Credit to Victor Soeiro for compiling and sharing this dataset.

Releases

No releases published

Packages

No packages published

Languages