Releases: Christian-Palmroos/PyOnset
v1.1.0
What's Changed:
1.) Changed the definition of the k-parameter in CUSUM function:
The new k is consistent with the classic Poisson-CUSUM k-parameter. Old k caused the method to be too conservative in onset determination with low counting rate data.
2.) Changes to Onset.cusum_onset()
- Return type of
onset_statschanged from list to dict.
Theonset_stats_dictcontains the background mean, background mean + n*sigma, the k-parameter, the h-parameter, z-standardized intensity values, the cusum function, the onset time and the channel energy string. - Greatly improved the diagnostics mode:
The new diagnostics mode, enabled with setting the keyworddiagnostics=Trueincusum_onset(), now displays individual plots for the z-standardized intensity, the cusum function and the parameter space for the k-parameter. The parameter space also displays the current background conditions mapped to this space, an equality line of$\sigma=\mu$ and a Poisson-statistics line$\sigma=\mu^{2}$ .
3.) Added a new method to the Onset class
final_onset_plot() accepts the following parameters:
channel{int/str}
The channel number or name, depending if custom data or not.resample{str}, optional
Pandas-compatible time string to time-average the intensity displayed on the plot. Default None.xlim{tuple,list}, optional
A pair of Pandas-compatible datetime strings. Defines the horizontal boundaries of the plot. Default +3/-5 hours of the onset time.ylim{tuple,list}, optional
A pair of floats or integers. Define the vertical boundaries of the plot. Default is half of the minimum and 1.5 * maximum intensity displayed on the plot.show_background{bool}, optional
A switch to draw the background on the plot. Default True.peak{bool}, optional
A switch to mark the maximum intensity in the plot with a vertical blue line, and add it to the legend and the returned dictionary. Default False.onset{str}, optional
A switch to use either the "mode" or the "median" of the onset analysis as the onset time. Default "mode".title{str}, optional
A title string for the figure. Default None generates a title from theOnsetobject's attributes and channel identifier.legend_loc{str}, optional
Placement for the legend. Either "in" or "out" of the axis frame. Default "out".savepath{str}, optional
A path to save the figure and csv of results. Default None.save{bool}, optional
A switch to save the figure and corresponding csv. Default False.figname{str}, optional
A custom name for the figure and csv if saved. Default None generates the name from theOnsetobject's attributes and channel identifier.
This method does not run onset determination or other calculation; instead it is used to simply visualize the onset time and the corresponding uncertainty found with the Onset.onset_statistics_per_channel() method.
4.) Updated the example notebooks
The Jupyter notebooks act as a tutorial on how to use PyOnset step-by-step. Old and changed functionality is replaced with up-to-date examples.
5.) Generated notes
- Restructure package to follow updated style by @jgieseler in #3
- make compatible with python 3.13 by @jgieseler in #4
- Create dependabot.yml by @jgieseler in #5
Full Changelog: 1.0.0...1.1.0
v1.0.0
Initial release of Pyonset
Full Changelog: https://github.com/Christian-Palmroos/PyOnset/commits/1.0.0