π Data Analysis and Visualization
# π Data Science Project Name
A brief description of your data science project.



## π Table of Contents
- [About](#about)
- [Dataset](#dataset)
- [Installation](#installation)
- [Usage](#usage)
- [Project Structure](#project-structure)
- [Results](#results)
- [Contributing](#contributing)
- [License](#license)
## π― About
This project analyzes [describe your data] to [describe your goal].
### Objectives
- Explore and visualize data patterns
- Build predictive models
- Generate actionable insights
## π Dataset
| Feature | Description |
|---------|-------------|
| `feature_1` | Description of feature 1 |
| `feature_2` | Description of feature 2 |
| `target` | What we're predicting |
**Source:** [Dataset Link](https://example.com)
**Size:** 10,000 rows Γ 15 columns
## π οΈ Installation
```bash
# Clone repository
git clone https://github.com/username/project-name.git
cd project-name
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txtpandas==2.0.0
numpy==1.24.0
matplotlib==3.7.0
seaborn==0.12.0
scikit-learn==1.2.0
jupyter==1.0.0# Quick start
from src.model import train_model
from src.data import load_data
# Load data
data = load_data('data/raw/dataset.csv')
# Train model
model = train_model(data)
# Make predictions
predictions = model.predict(new_data)jupyter notebook notebooks/analysis.ipynbproject-name/
β
βββ data/
β βββ raw/ # Original data
β βββ processed/ # Cleaned data
β
βββ notebooks/
β βββ 01_eda.ipynb # Exploratory analysis
β βββ 02_modeling.ipynb # Model building
β βββ 03_evaluation.ipynb
β
βββ src/
β βββ __init__.py
β βββ data.py # Data loading functions
β βββ features.py # Feature engineering
β βββ model.py # Model training
β βββ visualize.py # Plotting functions
β
βββ models/ # Saved models
βββ reports/ # Generated reports
β βββ figures/ # Saved plots
β
βββ requirements.txt
βββ README.md
βββ LICENSE
| Model | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| Logistic Regression | 0.85 | 0.83 | 0.87 | 0.85 |
| Random Forest | 0.92 | 0.91 | 0.93 | 0.92 |
| XGBoost | 0.94 | 0.93 | 0.95 | 0.94 |
- Finding 1: Description of insight
- Finding 2: Description of insight
- Finding 3: Description of insight
- Python - Programming language
- Pandas - Data manipulation
- NumPy - Numerical computing
- Matplotlib/Seaborn - Visualization
- Scikit-learn - Machine learning
- Jupyter - Interactive notebooks
- Fork the repository
- Create feature branch (
git checkout -b feature/NewFeature) - Commit changes (
git commit -m 'Add NewFeature') - Push to branch (
git push origin feature/NewFeature) - Open Pull Request
