Skip to content

E8arpit/refactored-guacamole

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 

Repository files navigation

refactored-guacamole

πŸ“Š Data Analysis and Visualization

Data Science Project README.md Template

# πŸ“Š Data Science Project Name

A brief description of your data science project.

![Python](https://img.shields.io/badge/Python-3.9+-blue.svg)
![License](https://img.shields.io/badge/License-MIT-green.svg)
![Status](https://img.shields.io/badge/Status-Active-success.svg)

## πŸ“‹ Table of Contents

- [About](#about)
- [Dataset](#dataset)
- [Installation](#installation)
- [Usage](#usage)
- [Project Structure](#project-structure)
- [Results](#results)
- [Contributing](#contributing)
- [License](#license)

## 🎯 About

This project analyzes [describe your data] to [describe your goal].

### Objectives
- Explore and visualize data patterns
- Build predictive models
- Generate actionable insights

## πŸ“ Dataset

| Feature | Description |
|---------|-------------|
| `feature_1` | Description of feature 1 |
| `feature_2` | Description of feature 2 |
| `target` | What we're predicting |

**Source:** [Dataset Link](https://example.com)

**Size:** 10,000 rows Γ— 15 columns

## πŸ› οΈ Installation

```bash
# Clone repository
git clone https://github.com/username/project-name.git
cd project-name

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

πŸ“¦ Requirements

pandas==2.0.0
numpy==1.24.0
matplotlib==3.7.0
seaborn==0.12.0
scikit-learn==1.2.0
jupyter==1.0.0

πŸš€ Usage

# Quick start
from src.model import train_model
from src.data import load_data

# Load data
data = load_data('data/raw/dataset.csv')

# Train model
model = train_model(data)

# Make predictions
predictions = model.predict(new_data)

Run Jupyter Notebook

jupyter notebook notebooks/analysis.ipynb

πŸ“‚ Project Structure

project-name/
β”‚
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ raw/              # Original data
β”‚   └── processed/        # Cleaned data
β”‚
β”œβ”€β”€ notebooks/
β”‚   β”œβ”€β”€ 01_eda.ipynb      # Exploratory analysis
β”‚   β”œβ”€β”€ 02_modeling.ipynb # Model building
β”‚   └── 03_evaluation.ipynb
β”‚
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ data.py           # Data loading functions
β”‚   β”œβ”€β”€ features.py       # Feature engineering
β”‚   β”œβ”€β”€ model.py          # Model training
β”‚   └── visualize.py      # Plotting functions
β”‚
β”œβ”€β”€ models/               # Saved models
β”œβ”€β”€ reports/              # Generated reports
β”‚   └── figures/          # Saved plots
β”‚
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ README.md
└── LICENSE

πŸ“Š Results

Model Performance

Model Accuracy Precision Recall F1-Score
Logistic Regression 0.85 0.83 0.87 0.85
Random Forest 0.92 0.91 0.93 0.92
XGBoost 0.94 0.93 0.95 0.94

Key Visualizations

Feature Importance

Key Findings

  1. Finding 1: Description of insight
  2. Finding 2: Description of insight
  3. Finding 3: Description of insight

πŸ”§ Technologies Used

  • Python - Programming language
  • Pandas - Data manipulation
  • NumPy - Numerical computing
  • Matplotlib/Seaborn - Visualization
  • Scikit-learn - Machine learning
  • Jupyter - Interactive notebooks

🀝 Contributing

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/NewFeature)
  3. Commit changes (git commit -m 'Add NewFeature')
  4. Push to branch (git push origin feature/NewFeature)
  5. Open Pull Request

About

πŸ“Š Data Analysis and Visualization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published