What this is: a safe, open demo that shows how an adaptive meta-layer can improve cluster workload placement using standard control signals (queue length, load coherence, task entropy). It includes a simulator, A/B comparison, charts, and a demo Helm chart.
What this is not: this demo does not contain any proprietary research formulae. Controllers here are simple (heuristic, PID, Bayesian) and meant for demonstration only.
python -m venv .venv && .venv/Scripts/python -m pip install --upgrade pip
.venv/Scripts/pip install -r requirements.txt
# Run A/B comparison
.venv/Scripts/python simulate.py --steps 1500 --nodes 48 --arrival 1.2 --seed 42
# Plot metrics
.venv/Scripts/python plot_metrics.pyOutputs: out/metrics_baseline.csv, out/metrics_hal.csv, and a console summary.
heuristic: balances spread vs pack based on coherence (σ), queue drift (δ), and entropy (H).pid: PID loop on queue length + coherence term.bayes: simple stability posterior mapped to a single policy knobp ∈ [0,1].
Switch controller:
.venv/Scripts/python simulate.py --controller pidThis chart deploys a minimal metrics server that streams demo metrics (no scheduling hooks).
cd charts/halms
helm template halms .- No proprietary math, no reverse path to any confidential models.
- Signals (σ, H, δ, Φ) are ordinary control/telemetry constructs.
Apache-2.0