-
Notifications
You must be signed in to change notification settings - Fork 2
4. Multiple vigilance parameters calculated in parallel
Jonas Schaub edited this page Nov 13, 2025
·
1 revision
Using the class Art2aTask, multiple clusterings, e.g. with different vigilance parameters, can be run in parallel.
// Prepare your data as a 2D float array
// Each row represents a data vector
float[][] dataMatrix = {
{0.1f, 0.2f, 0.3f},
{0.2f, 0.1f, 0.4f},
{0.9f, 0.8f, 0.7f},
{0.8f, 0.9f, 0.6f},
{0.15f, 0.25f, 0.35f},
{0.85f, 0.75f, 0.65f},
{0.05f, 0.15f, 0.25f},
{0.95f, 0.85f, 0.75f},
{0.12f, 0.22f, 0.32f},
{0.88f, 0.78f, 0.68f}
};
// Configure clustering parameters
//Multiple vigilance parameters in interval [0,1]
float[] vigilances = {0.1f, 0.3f, 0.5f, 0.7f, 0.9f};
//Maximum number of clusters in interval [2, number of data row vectors of getDataMatrix]
int maximumNumberOfClusters = 10;
//default value
int maximumNumberOfEpochs = 10;
//default value
float convergenceThreshold = 0.99f;
//default value
float learningParameter = 0.01f;
//default value
float offsetForContrastEnhancement = 1.0f;
//default value
long randomSeed = 1L;
// Validate data matrix (same length in all rows, no empty rows, etc.)
if (Utils.isDataMatrixValid(dataMatrix)) {
//*create list of Art2aTask instances to run in parallel below*
LinkedList<Art2aTask> art2aTaskList = new LinkedList<>();
PreprocessedArt2aData preprocessedArt2aData = Art2aKernel.getPreprocessedArt2aData(dataMatrix, offsetForContrastEnhancement);
for (float vigilance : vigilances) {
art2aTaskList.add(
new Art2aTask(
preprocessedArt2aData,
vigilance,
maximumNumberOfClusters,
maximumNumberOfEpochs,
convergenceThreshold,
learningParameter,
randomSeed
)
);
}
//*run tasks in parallel*
ExecutorService executorService = Executors.newFixedThreadPool(vigilances.length);
List<Future<Art2aResult>> futureList = null;
try {
futureList = executorService.invokeAll(art2aTaskList);
} catch (InterruptedException e) {
System.out.println("test_ParallelClustering: InterruptedException occurred.");
}
executorService.shutdown();
//collect results
Art2aResult[] parallelResults = new Art2aResult[vigilances.length];
int index = 0;
for (Future<Art2aResult> future : futureList) {
try {
parallelResults[index++] = future.get();
} catch (Exception e) {
System.out.println("test_ParallelClustering: Exception occurred.");
System.exit(1);
}
}
// Compare results
for (int i = 0; i < vigilances.length; i++) {
System.out.println("Vigilance " + vigilances[i] +
": " + parallelResults[i].getNumberOfDetectedClusters() + " clusters");
}
}
Output:
Vigilance 0.1: 2 clusters
Vigilance 0.3: 2 clusters
Vigilance 0.5: 2 clusters
Vigilance 0.7: 3 clusters
Vigilance 0.9: 5 clusters