The code repository for NeurIPS'25 paper "Feature-aware Modulation for Learning from Temporal Tabular Data".
The experiments share the same setup with Cai & Ye (2025) [1].
conda create --name benchmark python=3.10
pip install -r requirements.txt
conda install faiss-gpu -c pytorch # only for TabRFor deep methods, run:
python train_model_deep.py --dataset $DATASET_NAME \
--model_type $MODEL_NAME \
--cat_policy $CAT_POLICY \
--enable_timestamp \
--gpu 0 --max_epoch 200 --seed_num 15 \
--validate_option holdout_foremost_sample \
--tune --retune --n_trials 100-
DATASET_NAME: Dataset name in TabReD benchmark [2].choices=(cooking-time, delivery-eta, ecom-offers, homecredit-default, homesite-insurance, maps-routing, sberbank-housing, weather) -
MODEL_NAME: Deep method name.*_temporalmeans baseline in [1],*_modulatedmeans model with our temporal modulation.choices=( mlp, mlp_temporal, mlp_modulated, mlp_plr, mlp_plr_temporal, mlp_plr_modulated, tabm, tabm_temporal, tabm_modulated, snn, snn_temporal, dcn2, dcn2_temporal, ftt, ftt_temporal, tabr, tabr_temporal, modernNCA, modernNCA_temporal, ) -
CAT_POLICY: Categorical feature policy. We follow [1] and fix this policy to one-hot encoding.case $method in modernNCA*|tabr*) cat_policy=tabr_ohe ;; mlp_plr*|tabm*|ftt*|dcn2*|snn*) cat_policy=indices ;; *) cat_policy=ohe ;; esac
For classical methods, run:
python train_model_classical.py --dataset $DATASET_NAME \
--model_type $MODEL_NAME \
--cat_policy $CAT_POLICY \
--enable_timestamp \
--gpu "" --seed_num 15 \
--validate_option holdout_foremost_sample \
--tune --retune --n_trials 100-
DATASET_NAMEshare the same choices with deep methods. -
MODEL_NAME: Classical method name.choices=( XGBoost, LightGBM, CatBoost, RandomForest, SGD, # Linear in paper ) -
CAT_POLICY: Categorical feature policy. We follow [1] and fix this policy to one-hot encoding.case $method in catboost) cat_policy=indices ;; *) cat_policy=ohe ;; esac
Enjoy the code!
[1] Cai, H.-R. and Ye, H.-J. Understanding the limits of deep tabular methods with temporal shift. In ICML, 2025.
[2] Rubachev, I., Kartashev, N., Gorishniy, Y., and Babenko, A. Tabred: A benchmark of tabular machine learning in-the-wild. In ICLR, 2025.