To install the decoder you need:
- cmake >= 3.30
- C++17 or newer
- python >= 3.10
- scikit-build
Then git clone the package to your desire location. Then to include
pybind11 for the python bindings, from the root directory run
git submodule init && git submodule update
Then build the decoder with,
cd extern
pip install .
If you want to uninstall the bindings run,
pip uninstall decoder_bindings
Then the decoder can be used from python such as pandas
import decoder_bindings
import pandas as pd
process = decoder_bindings.ProcessEvents(light_slot=14)
test_file = "/path/to/file/pGRAMS_bin_X.dat"
process.open_file(test_file)
# Iterate through file, one event at a time
# it will return True until the last event is processed
# in which case it will return False
light_fem = 16
event_num = 0
readout_data = []
while process.get_event():
try:
tmp_dict = process.get_event_dict()
readout_data.append(tmp_dict)
event_num += 1
except:
continue
readout_df = pd.DataFrame(readout_data)Each row is an event with a dictionary of both the charge and light data. Below is an example of an event. (the charge event number is +1 to the real event number)
{'slot_number': {0: array([13, 14, 15, 16], dtype=uint16)},
'num_adc_word': {0: array([48959, 48959, 48959, 121], dtype=uint32)},
'event_number': {0: array([2, 2, 2, 1], dtype=uint16)},
'event_frame_number': {0: array([71, 71, 71, 72], dtype=uint16)},
'trigger_frame_number': {0: array([72, 72, 72, 72], dtype=uint16)},
'check_sum': {0: array([40394, 41580, 18995, 20241], dtype=uint16)},
'trigger_sample': {0: array([123, 123, 123, 123], dtype=uint16)},
'light_channel': {0: array([2, 2, 2, 2, 2], dtype=uint16)},
'light_frame_number': {0: array([71, 72, 72, 73, 74], dtype=uint32)},
'light_readout_sample': {0: array([2268, 476, 6876, 5084, 3292], dtype=uint16)},
'light_adc_words': {0: array([[2050, 2050, 2120, 2588, 3033, 3229, 3205, 3051, 2851, 2653, 2486,
2355, 2258, 2189, 2142, 2110, 2089, 2074, 2064, 2059],
[2049, 2048, 2133, 2613, 3047, 3232, 3200, 3042, 2841, 2645, 2479,
2350, 2254, 2187, 2139, 2108, 2087, 2073, 2063, 2058],
[2050, 2049, 2142, 2622, 3047, 3221, 3183, 3023, 2823, 2629, 2468,
2342, 2248, 2182, 2138, 2107, 2086, 2073, 2064, 2060],
[2049, 2049, 2158, 2645, 3060, 3225, 3180, 3017, 2815, 2623, 2462,
2338, 2247, 2180, 2136, 2106, 2086, 2071, 2064, 2057],
[2050, 2049, 2170, 2662, 3071, 3230, 3181, 3016, 2813, 2621, 2460,
2336, 2244, 2180, 2136, 2106, 2085, 2072, 2063, 2058]],
dtype=uint16)},
'charge_channel': {0: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 190, 191], dtype=uint16)},
'charge_adc_words': {0: array([[2044, 2044, 2044, ..., 2044, 2044, 2044],
[2042, 2041, 2042, ..., 2041, 2041, 2042],
[2043, 2044, 2043, ..., 2043, 2044, 2043],
...,
[ 460, 460, 460, ..., 460, 460, 460],
[ 469, 470, 469, ..., 469, 470, 470],
[ 472, 473, 473, ..., 473, 472, 473]],
shape=(192, 763), dtype=uint16)}}The full waveform for a channel in an event can be reconstructed
using the get_full_light_waveform() and get_full_light_axis()
and plotted. The arguments fo the functions is
get_full_light_waveform(<channel_number>, <roi_sample>, <roi_frame>, <roi_list>)get_full_light_axis(<trigger_frame>, <trigger_sample>, <roi_frame>)event = 5
channel = 3
full_waveform = proc.get_full_light_waveform(channel, readout_df['light_channel'][event],
readout_df['light_readout_sample'][event],
readout_df['light_frame_number'][event],
readout_df['light_adc_words'][event])
full_axis = proc.get_full_light_axis(readout_df['trigger_frame_number'][event][fem_number].astype(int),
readout_df['trigger_sample'][event][fem_number].astype(int),
readout_df['light_frame_number'][event][fem_number])
plt.figure(figsize=(16,4))
plt.plot(full_axis/1e3, full_waveform)
plt.xlabel("[$\mu$s]")
plt.show()