Skip to content
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 19 additions & 33 deletions pytorch_ssim/__init__.py
Original file line number Diff line number Diff line change
@@ -1,73 +1,59 @@
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Awesome. Can you add imports back?


def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
gauss = torch.exp(-(torch.arange(window_size) - window_size // 2)**2 / (2.0 * sigma**2))
return gauss / gauss.sum()

def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window

def _ssim(img1, img2, window, window_size, channel, size_average = True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
mu1_mu2 = mu1 * mu2

sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

C1 = 0.01**2
C2 = 0.03**2
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2

ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)

class SSIM(torch.nn.Module):
def __init__(self, window_size = 11, size_average = True):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
self.register_buffer('window', create_window(window_size, self.channel))

def forward(self, img1, img2):
(_, channel, _, _) = img1.size()

if channel == self.channel and self.window.data.type() == img1.data.type():
if channel == self.channel and self.window.type() == img1.type():
window = self.window
else:
window = create_window(self.window_size, channel)

if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)

window = window.to(img1.device).type_as(img1)
self.window = window
self.channel = channel


return _ssim(img1, img2, window, self.window_size, channel, self.size_average)

def ssim(img1, img2, window_size = 11, size_average = True):
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)

if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)

window = window.to(img1.device).type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)