Link to accepted AISTATS'23 paper.
In the project folder:
conda create --prefix ./env
conda activate ./env
conda install -y -c conda-forge -c gpytorch --file requirements.txt
Run the following from the main directory (where this README file is also located) to install the package in development mode (that is, modifications to the source code is directly visible to file importing it without the need for reinstallation).
pip install -e .
Copy /usr/lib/libopenblas.so into acgp/blas_wrapper/openblas/lib.
Test by running python run_hyper_parameter_tuning.py. If it throws an error like the following:
AttributeError: [...]/blas_wrappers/openblas/lib/libopenblas.so: undefined symbol: dpotrf_
copy instead /usr/lib/liblapack.so to blas_wrapper/openblas/lib/libopenblas.so (yes, to libopenblas.so!).
The file example_script.py guides through the main concepts of ACGP.
Switch to the experiments folder.
cd experiments
python run_ground_truth_experiments.py -m generate_batch_jobs
python run_cglb_experiments.py -m generate_batch_jobs
To recreate the plots run
python make_bound_plotting.py
python make_llh_plotting.py
python run_hyper_parameter_tuning.py -m generate_batch_jobs
After all runs have finished execute
python local_auxilary_computations.py
To recreate the result tables run
python make_results_table.py
For the plots run
python make_optimization_plotting.py