Skip to content

Spatio-Temporal-Lab/LBF-Gama

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gama: General Adaptive Memory Allocation for Learned Bloom Filters


Gama is a holistic framework that solves the memory allocation problem of LBFs. The objective of Gama is to minimize the overall FPR of an LBF under a given memory budget

Prerequisites for testing

  • Default Python version used in experiments: 3.10.12
  • Run model_generate.py to generate a fixed-size LightGBM model for method comparison
  • Run dataset/get_sample.py to generate the sampled dataset

Run

  • We use URL Dataset as the default for testing
Method Name Python Script Path
Gama-LBF lgb_url_GamaLBF_ada.py
Gama-PLBF lgb_url_GamaPLBF_ada.py
PLBF PLBF/main.py
Ada-BF ada-bf/main.py
Sandwich-BF sandwich-lbf/main.py
LBF lbf/main.py
BF bf_url_main.py
LBF+GA lgb_url_GamaLBF_ga.py
PLBF+GA lgb_url_GamaPLBF_ga.py

Datasets

The datasets used in paper can be downloaded from the following links:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages