Skip to content

TingruiZh/LayoutDiffusion-Repro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 

Repository files navigation

LayoutDiffusion-Repro

A PyTorch-based reproduction of the LayoutDiffusion model proposed in the paper:
"LayoutDiffusion: Content-Aware Layout Generation with Denoising Diffusion Models"
[arXiv:2305.18252]


🚧 Project Status

This is a work-in-progress implementation aiming to reproduce key components and results from the LayoutDiffusion paper.

  • Paper reading and model structure analysis
  • Dataset preparation (PubLayNet / RICO or custom layouts)
  • Layout encoder & DDPM forward process
  • Cross-modal conditioning (category, image, text embedding)
  • Loss functions and training pipeline
  • Sampling & layout rendering

πŸ“„ Paper Summary

LayoutDiffusion is a content-aware layout generation method that formulates layout synthesis as a denoising diffusion process. Key contributions include:

  • Category-conditional layout generation
  • Cross-modal embeddings for alignment
  • Transformer-based architecture with DDPM backbone

πŸ“ Folder Structure

. β”œβ”€β”€ configs/ # YAML or JSON training configs β”œβ”€β”€ datasets/ # Processed layout datasets β”œβ”€β”€ models/ # Diffusion model, transformer blocks, encoders β”œβ”€β”€ scripts/ # Training and evaluation scripts β”œβ”€β”€ utils/ # Data loaders, metrics, visualizations └── main.py # Entry point


πŸ“¦ Requirements

pip install torch torchvision einops matplotlib numpy
pip install diffusers transformers # optional if using Huggingface tools

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published