micronutrients is currently an early prototype to compute
micronutrient indicators from survey data.
It is not meant for serious use yet and still work in progress.
The following functions compute results:
individual_classificationto compute row level indicatorsprevalence_long_formatto compute detailed prevalence estimates and other summary statisticsprevalence_short_formatto compute less-detailed prevalence estimates and other summary statistics
Indicators:
indicator_anaemia()indicator_ferritin(adjustment)indicator_ida(adjustment)indicator_iodine()
Adjustments:
adjustment_none()adjustment_ferritin_arithmetic_correction()adjustment_ferritin_cutoff()adjustment_ferritin_regression_correction()adjustment_ferritin_rm_agp_crp()
Depending on the indicators and adjustment methods you use you have to
input specific values, like CRP or AGP.
To compute row-level classification you can do the following:
dataset <- read.csv("some_data_set")
result <- individual_classification(
indicators = list(
indicator_iodine(),
indicator_ferritin(adjustment_none()),
indicator_ferritin(adjustment_ferritin_cutoff()),
indicator_anaemia(),
indicator_ida()
),
age = dataset$age_years,
sex = dataset$sex,
pregnancy_status = dataset$pregnancy_status,
lactating_status = dataset$lactating_status,
ferritin = dataset$ferritin_measurement,
iodine = dataset$iodine,
CRP = dataset$crp_measurement,
AGP = dataset$agp_measurement,
haemoglobin = dataset$haemoglobin_measurement,
is_smoker = dataset$is_smoker,
altitude = dataset$altitude,
smokes_cigarettes_per_day = dataset$smokes_cigarettes_per_day,
pregnancyweeks = dataset$pregnancyweeks,
pregnancymonths = dataset$pregnancymonths
)Prevalence functions accept the same arguments and compute a summary table.
result <- micronutrients_stats(
indicators = list(
indicator_iodine(),
indicator_ferritin(adjustment_none()),
indicator_ferritin(adjustment_ferritin_cutoff()),
indicator_anaemia(),
indicator_ida()
),
age = dataset$age_years,
sex = dataset$sex,
pregnancy_status = dataset$pregnancy_status,
lactating_status = dataset$lactating_status,
ferritin = dataset$ferritin_measurement,
iodine = dataset$iodine,
CRP = dataset$crp_measurement,
AGP = dataset$agp_measurement,
haemoglobin = dataset$haemoglobin_measurement,
is_smoker = dataset$is_smoker,
altitude = dataset$altitude,
smokes_cigarettes_per_day = dataset$smokes_cigarettes_per_day,
pregnancyweeks = dataset$pregnancyweeks,
pregnancymonths = dataset$pregnancymonths
)covr::package_coverage()
#> micronutrients Coverage: 81.58%
#> R/concept-area.R: 0.00%
#> R/concept-fasting-status.R: 0.00%
#> R/concept-helpers.R: 0.00%
#> R/concept-iron-deficiency.R: 0.00%
#> R/concept-lactating-status.R: 0.00%
#> R/concept-mothers-education.R: 0.00%
#> R/concept-wealth-quintile.R: 0.00%
#> R/measurements.R: 20.00%
#> R/concept-sex.R: 22.22%
#> R/utils.R: 29.17%
#> R/indicators-iodine.R: 33.33%
#> R/indicators-ferritin.R: 63.01%
#> R/indicators.R: 85.17%
#> R/concept-pregnancy-status.R: 87.50%
#> R/age-groups.R: 89.61%
#> R/concepts.R: 91.38%
#> R/indicators-iron-deficiency-anaemia.R: 95.65%
#> R/prevalence.R: 96.80%
#> R/adjustments-export.R: 100.00%
#> R/classifications.R: 100.00%
#> R/indicators-anaemia.R: 100.00%
#> R/indicators-export.R: 100.00%