Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -318,6 +318,11 @@ Additions to existing modules
```agda
m≤n⇒m≤n*o : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ n * o
m≤n⇒m≤o*n : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ o * n
<‴-irrefl : Irreflexive _≡_ _<‴_
≤‴-irrelevant : Irrelevant {A = ℕ} _≤‴_
<‴-irrelevant : Irrelevant {A = ℕ} _<‴_
>‴-irrelevant : Irrelevant {A = ℕ} _>‴_
≥‴-irrelevant : Irrelevant {A = ℕ} _≥‴_
```

adjunction between `suc` and `pred`
Expand Down
21 changes: 21 additions & 0 deletions src/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -2237,6 +2237,27 @@ _>‴?_ = flip _<‴?_
≤‴⇒≤ : _≤‴_ ⇒ _≤_
≤‴⇒≤ = ≤″⇒≤ ∘ ≤‴⇒≤″

<‴-irrefl : Irreflexive _≡_ _<‴_
<‴-irrefl eq = <-irrefl eq ∘ ≤‴⇒≤

≤‴-irrelevant : Irrelevant {A = ℕ} _≤‴_
≤‴-irrelevant ≤‴-refl = lemma refl
where
lemma : ∀ {m n} → (e : m ≡ n) → (q : m ≤‴ n) → subst (m ≤‴_) e ≤‴-refl ≡ q
lemma {m} e ≤‴-refl = cong (λ e → subst (m ≤‴_) e ≤‴-refl) $ ≡-irrelevant e refl
lemma refl (≤‴-step m<m) with () ← <‴-irrefl refl m<m
≤‴-irrelevant (≤‴-step m<m) ≤‴-refl with () ← <‴-irrefl refl m<m
≤‴-irrelevant (≤‴-step p) (≤‴-step q) = cong ≤‴-step $ ≤‴-irrelevant p q

<‴-irrelevant : Irrelevant {A = ℕ} _<‴_
<‴-irrelevant = ≤‴-irrelevant

>‴-irrelevant : Irrelevant {A = ℕ} _>‴_
>‴-irrelevant = ≤‴-irrelevant

≥‴-irrelevant : Irrelevant {A = ℕ} _≥‴_
≥‴-irrelevant = ≤‴-irrelevant

------------------------------------------------------------------------
-- Other properties
------------------------------------------------------------------------
Expand Down