Skip to content

[Add] padRight properties to Data.Vec.Properties #2769

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 13 commits into
base: master
Choose a base branch
from
21 changes: 21 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,3 +77,24 @@ Additions to existing modules
≟-≢ : (m≢n : m ≢ n) → (m ≟ n) ≡ no m≢n
∸-suc : m ≤ n → suc n ∸ m ≡ suc (n ∸ m)
```

* In `Data.Vec.Properties`:
```agda
padRight-lookup : (m≤n : m ≤ n) (a : A) (xs : Vec A m) (i : Fin m) → lookup (padRight m≤n a xs) (inject≤ i m≤n) ≡ lookup xs i

padRight-map : (f : A → B) (m≤n : m ≤ n) (a : A) (xs : Vec A m) → map f (padRight m≤n a xs) ≡ padRight m≤n (f a) (map f xs)

padRight-zipWith : (f : A → B → C) (m≤n : m ≤ n) (a : A) (b : B) (xs : Vec A m) (ys : Vec B m) →
zipWith f (padRight m≤n a xs) (padRight m≤n b ys) ≡ padRight m≤n (f a b) (zipWith f xs ys)

padRight-zipWith₁ : (f : A → B → C) (o≤m : o ≤ m) (m≤n : m ≤ n) (a : A) (b : B) (xs : Vec A m) (ys : Vec B o) →
zipWith f (padRight m≤n a xs) (padRight (≤-trans o≤m m≤n) b ys) ≡
padRight m≤n (f a b) (zipWith f xs (padRight o≤m b ys))

padRight-take : (m≤n : m ≤ n) (a : A) (xs : Vec A m) .(n≡m+o : n ≡ m + o) → take m (cast n≡m+o (padRight m≤n a xs)) ≡ xs

padRight-drop : (m≤n : m ≤ n) (a : A) (xs : Vec A m) .(n≡m+o : n ≡ m + o) → drop m (cast n≡m+o (padRight m≤n a xs)) ≡ replicate o a

padRight-updateAt : (m≤n : m ≤ n) (x : A) (xs : Vec A m) (f : A → A) (i : Fin m) →
updateAt (padRight m≤n x xs) (inject≤ i m≤n) f ≡ padRight m≤n x (updateAt xs i f)
```
78 changes: 60 additions & 18 deletions src/Data/Vec/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ module Data.Vec.Properties where
open import Algebra.Definitions
open import Data.Bool.Base using (true; false)
open import Data.Fin.Base as Fin
using (Fin; zero; suc; toℕ; fromℕ<; _↑ˡ_; _↑ʳ_)
using (Fin; zero; suc; toℕ; fromℕ<; _↑ˡ_; _↑ʳ_; inject≤)
open import Data.List.Base as List using (List)
import Data.List.Properties as List
open import Data.Nat.Base
Expand Down Expand Up @@ -154,22 +154,6 @@ take≡truncate : ∀ m (xs : Vec A (m + n)) →
take≡truncate zero _ = refl
take≡truncate (suc m) (x ∷ xs) = cong (x ∷_) (take≡truncate m xs)

------------------------------------------------------------------------
-- pad

padRight-refl : (a : A) (xs : Vec A n) → padRight ≤-refl a xs ≡ xs
padRight-refl a [] = refl
padRight-refl a (x ∷ xs) = cong (x ∷_) (padRight-refl a xs)

padRight-replicate : (m≤n : m ≤ n) (a : A) → replicate n a ≡ padRight m≤n a (replicate m a)
padRight-replicate z≤n a = refl
padRight-replicate (s≤s m≤n) a = cong (a ∷_) (padRight-replicate m≤n a)

padRight-trans : ∀ {p} (m≤n : m ≤ n) (n≤p : n ≤ p) (a : A) (xs : Vec A m) →
padRight (≤-trans m≤n n≤p) a xs ≡ padRight n≤p a (padRight m≤n a xs)
padRight-trans z≤n n≤p a [] = padRight-replicate n≤p a
padRight-trans (s≤s m≤n) (s≤s n≤p) a (x ∷ xs) = cong (x ∷_) (padRight-trans m≤n n≤p a xs)

------------------------------------------------------------------------
-- truncate and padRight together

Expand Down Expand Up @@ -1184,13 +1168,71 @@ toList-replicate : ∀ (n : ℕ) (x : A) →
toList-replicate zero x = refl
toList-replicate (suc n) x = cong (_ List.∷_) (toList-replicate n x)

cast-replicate : ∀ .(m≡n : m ≡ n) (x : A) → cast m≡n (replicate m x) ≡ replicate n x
cast-replicate {m = zero} {n = zero} _ _ = refl
cast-replicate {m = suc _} {n = suc _} m≡n x = cong (x ∷_) (cast-replicate (suc-injective m≡n) x)

------------------------------------------------------------------------
-- pad

padRight-refl : (a : A) (xs : Vec A n) → padRight ≤-refl a xs ≡ xs
padRight-refl a [] = refl
padRight-refl a (x ∷ xs) = cong (x ∷_) (padRight-refl a xs)

padRight-replicate : (m≤n : m ≤ n) (a : A) → replicate n a ≡ padRight m≤n a (replicate m a)
padRight-replicate z≤n a = refl
padRight-replicate (s≤s m≤n) a = cong (a ∷_) (padRight-replicate m≤n a)

padRight-trans : ∀ (m≤n : m ≤ n) (n≤o : n ≤ o) (a : A) (xs : Vec A m) →
padRight (≤-trans m≤n n≤o) a xs ≡ padRight n≤o a (padRight m≤n a xs)
padRight-trans z≤n n≤o a [] = padRight-replicate n≤o a
padRight-trans (s≤s m≤n) (s≤s n≤o) a (x ∷ xs) = cong (x ∷_) (padRight-trans m≤n n≤o a xs)

padRight-lookup : ∀ (m≤n : m ≤ n) (a : A) (xs : Vec A m) (i : Fin m) →
lookup (padRight m≤n a xs) (inject≤ i m≤n) ≡ lookup xs i
padRight-lookup (s≤s m≤n) a (x ∷ xs) zero = refl
padRight-lookup (s≤s m≤n) a (x ∷ xs) (suc i) = padRight-lookup m≤n a xs i

padRight-map : ∀ (f : A → B) (m≤n : m ≤ n) (a : A) (xs : Vec A m) →
map f (padRight m≤n a xs) ≡ padRight m≤n (f a) (map f xs)
padRight-map f z≤n a [] = map-replicate f a _
padRight-map f (s≤s m≤n) a (x ∷ xs) = cong (f x ∷_) (padRight-map f m≤n a xs)

padRight-zipWith : ∀ (f : A → B → C) (m≤n : m ≤ n) (a : A) (b : B)
(xs : Vec A m) (ys : Vec B m) →
zipWith f (padRight m≤n a xs) (padRight m≤n b ys) ≡ padRight m≤n (f a b) (zipWith f xs ys)
padRight-zipWith f z≤n a b [] [] = zipWith-replicate f a b
padRight-zipWith f (s≤s m≤n) a b (x ∷ xs) (y ∷ ys) = cong (f x y ∷_) (padRight-zipWith f m≤n a b xs ys)

padRight-zipWith₁ : ∀ (f : A → B → C) (o≤m : o ≤ m) (m≤n : m ≤ n)
(a : A) (b : B) (xs : Vec A m) (ys : Vec B o) →
zipWith f (padRight m≤n a xs) (padRight (≤-trans o≤m m≤n) b ys) ≡
padRight m≤n (f a b) (zipWith f xs (padRight o≤m b ys))
padRight-zipWith₁ f o≤m m≤n a b xs ys = trans (cong (zipWith f (padRight m≤n a xs)) (padRight-trans o≤m m≤n b ys))
(padRight-zipWith f m≤n a b xs (padRight o≤m b ys))

padRight-take : ∀ (m≤n : m ≤ n) (a : A) (xs : Vec A m) .(n≡m+o : n ≡ m + o) →
take m (cast n≡m+o (padRight m≤n a xs)) ≡ xs
padRight-take m≤n a [] n≡m+o = refl
padRight-take (s≤s m≤n) a (x ∷ xs) n≡m+o = cong (x ∷_) (padRight-take m≤n a xs (suc-injective n≡m+o))

padRight-drop : ∀ (m≤n : m ≤ n) (a : A) (xs : Vec A m) .(n≡m+o : n ≡ m + o) →
drop m (cast n≡m+o (padRight m≤n a xs)) ≡ replicate o a
padRight-drop {m = zero} z≤n a [] n≡m+o = cast-replicate n≡m+o a
padRight-drop {m = suc _} {n = suc _} (s≤s m≤n) a (x ∷ xs) n≡m+o = padRight-drop m≤n a xs (suc-injective n≡m+o)

padRight-updateAt : ∀ (m≤n : m ≤ n) (x : A) (xs : Vec A m) (f : A → A) (i : Fin m) →
updateAt (padRight m≤n x xs) (inject≤ i m≤n) f ≡
padRight m≤n x (updateAt xs i f)
padRight-updateAt {n = suc _} (s≤s m≤n) x (y ∷ xs) f zero = refl
padRight-updateAt {n = suc _} (s≤s m≤n) x (y ∷ xs) f (suc i) = cong (y ∷_) (padRight-updateAt m≤n x xs f i)

------------------------------------------------------------------------
-- iterate

iterate-id : ∀ (x : A) n → iterate id x n ≡ replicate n x
iterate-id x zero = refl
iterate-id x (suc n) = cong (_ ∷_) (iterate-id (id x) n)

take-iterate : ∀ n f (x : A) → take n (iterate f x (n + m)) ≡ iterate f x n
take-iterate zero f x = refl
take-iterate (suc n) f x = cong (_ ∷_) (take-iterate n f (f x))
Expand Down
Loading