Skip to content

contextualizer-ai/ols-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ols-mcp

A Model Context Protocol (MCP) server for retrieving information from the Ontology Lookup Service (OLS).

This package provides tools for searching ontologies, retrieving ontology details, and accessing ontology terms through a standardized MCP interface.

Installation

From PyPI

pip install ols-mcp

From Source

# Clone the repository
git clone https://github.com/contextualizer-ai/ols-mcp.git
cd ols-mcp

# Install with uv (recommended)
uv sync --group dev

# Or with pip
pip install -e .

Usage

As MCP Server

The primary use case is as an MCP server that provides ontology search capabilities to AI agents and applications.

Claude Desktop Integration

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "ols-mcp": {
      "command": "ols-mcp",
      "args": []
    }
  }
}

Claude Code Integration

claude mcp add ols-mcp

Goose Integration

goose session start --with-mcp "ols-mcp"

Available Tools

The MCP server provides three main tools:

  1. search_all_ontologies - Search across all ontologies in OLS
  2. get_ontology_info - Get detailed information about a specific ontology
  3. get_terms_from_ontology - Retrieve terms from a specific ontology

Direct Python Usage

from ols_mcp.tools import search_all_ontologies, get_ontology_info, get_terms_from_ontology

# Search for biological terms
results = search_all_ontologies("apoptosis", max_results=5)

# Get information about Gene Ontology
go_info = get_ontology_info("go")

# Get terms from a specific ontology
terms = get_terms_from_ontology("go", max_results=10)

CLI Usage

Running the MCP Server

Run the MCP server directly:

ols-mcp

Testing Individual Tools

You can test the tools directly using Python:

# Search for biological terms across all ontologies
uv run python -c "from ols_mcp.tools import search_all_ontologies; print(search_all_ontologies('apoptosis', max_results=3))"

# Get information about Gene Ontology
uv run python -c "from ols_mcp.tools import get_ontology_info; print(get_ontology_info('go'))"

# Get terms from a specific ontology
uv run python -c "from ols_mcp.tools import get_terms_from_ontology; print(get_terms_from_ontology('go', max_results=3))"

MCP Protocol Testing

Test the MCP protocol directly:

# Test basic protocol handshake
make test-mcp

# Test extended protocol with tool calls
make test-mcp-extended

Development

Prerequisites

  • Python 3.11+
  • uv (recommended) or pip

Setup

# Clone the repository
git clone https://github.com/contextualizer-ai/ols-mcp.git
cd ols-mcp

# Install development dependencies
uv sync --group dev

Available Make Targets

Development

  • make dev - Install development dependencies
  • make install - Install production dependencies only
  • make clean - Clean build artifacts

Testing

  • make test-unit - Run unit tests (fast, mocked)
  • make test-real-api - Run integration tests against live OLS API
  • make test-mcp - Test MCP protocol functionality

Code Quality and Maintenance

  • make format - Format code with Black
  • make lint - Run Ruff linter with fixes
  • make mypy - Run type checking
  • make deptry - Check for unused dependencies
  • make test-coverage - Run all tests with coverage report
  • make test-integration - Run integration tests

Build & Release

  • make build - Build package distributions
  • make upload-test - Upload to TestPyPI
  • make upload - Upload to PyPI
  • make release - Complete release workflow (test → build → upload)

Server Operations

  • make server - Run the MCP server locally
  • make all - Run complete CI pipeline

Running Tests

# Run all tests
make test-coverage

# Run only unit tests (fast)
make test-unit

# Run integration tests against real OLS API
make test-real-api

# Run with specific pytest options
uv run pytest tests/ -v -k "test_search"

Code Quality Tools

The project uses modern Python tooling:

  • uv - Fast Python package manager
  • ruff - Fast Python linter and formatter
  • black - Code formatting (alternative to ruff format)
  • mypy - Static type checking
  • pytest - Testing framework with coverage reporting

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run the test suite: make all
  5. Submit a pull request

Release Process

Releases are automated via GitHub Actions:

  1. Create and push a version tag:

    git tag v0.1.4
    git push origin v0.1.4
  2. GitHub Actions will automatically:

    • Run the full test suite
    • Build the package
    • Publish to PyPI

Architecture

Project Structure

ols-mcp/
├── src/ols_mcp/
│   ├── __init__.py
│   ├── main.py          # FastMCP server setup
│   ├── api.py           # OLS API wrapper functions
│   └── tools.py         # MCP tools that wrap API functions
├── tests/
│   ├── test_api.py      # Unit tests for API functions
│   ├── test_tools.py    # Unit tests for MCP tools
│   └── test_integration.py # Integration tests with real OLS API
├── .github/workflows/   # CI/CD pipelines
├── Makefile            # Development automation
└── pyproject.toml      # Project configuration

Key Components

  • api.py - Low-level functions that interact with OLS REST API
  • tools.py - Higher-level MCP tools that provide simplified interfaces
  • main.py - FastMCP server that exposes tools via MCP protocol

License

MIT

About

An MCP for retrieving information from the Ontology Lookup Service

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 5