|
| 1 | +# Multiplex tissue image processing and analysis with Galaxy-ME |
| 2 | + |
| 3 | +Use this workflow when you have pre-registered OME-TIFF images that are ready for analysis (no preprocessing needed). |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +This workflow processing and analyzes multiple multiplex tissue imaging datasets by |
| 8 | + |
| 9 | +1. Performing **background subtraction, nuclear segmentation, and feature extraction** |
| 10 | +2. Performing hierarchical, GMM-based **cell phenotyping** |
| 11 | +3. Analyzing **multi-sample cell type composition** |
| 12 | +4. Quantifying the **spatial arrangment of cell types** in the tissues |
| 13 | +5. Exploring the original images with all downstream associated data using **interactive dashboards** |
| 14 | + |
| 15 | +## Input datasets |
| 16 | + |
| 17 | +- Collection of registered OME-TIFF images |
| 18 | +- Markers file (CSV) for background subtraction |
| 19 | + |
| 20 | + - Example markers file: |
| 21 | + |
| 22 | +``` |
| 23 | +marker_name,background,exposure,remove |
| 24 | +DNA_1,,, |
| 25 | +Control_A488,,,TRUE |
| 26 | +Control_A555,,,TRUE |
| 27 | +Control_A647,,,TRUE |
| 28 | +DNA_2,,,TRUE |
| 29 | +RNA_Pol_II_CTD,Control_A488,, |
| 30 | +pERK,Control_A555,, |
| 31 | +p53,Control_A647,, |
| 32 | +... |
| 33 | +``` |
| 34 | + |
| 35 | + |
| 36 | +- Phenotype workflow and manual gate files (CSV): A comma-separated Scimap phenotyping file that maps hierarchical cell phenotypes to markers, and a manual gates file that maps markers to manually-determined thresholds |
| 37 | + |
| 38 | + - For examples, see our [tutorial](https://training.galaxyproject.org/training-material/topics/imaging/tutorials/multiplex-tissue-imaging-TMA/tutorial.html) and the [Scimap documentation](https://scimap-doc.readthedocs.io/en/latest/tutorials/scimap-tutorial-cell-phenotyping/). |
| 39 | + |
| 40 | +## Inputs values |
| 41 | + |
| 42 | +All input values have been preset in the workflow and are optimized for cyclic immunofluorescence images captured using a Rarecyte slide scanner. Some important assumptions are made: |
| 43 | + |
| 44 | +- Channel used for nuclear segmentation (Mesmer): `0` |
| 45 | +- Image resolution (microns per pixel): `0.65` |
| 46 | + |
| 47 | +The workflow should be imported and edited if these values are not suitable for your datasets. |
| 48 | + |
| 49 | +## Processing |
| 50 | + |
| 51 | +For more detailed information, see our [tutorial on the Galaxy Training Network](https://training.galaxyproject.org/training-material/topics/imaging/tutorials/multiplex-tissue-imaging-TMA/tutorial.html) |
| 52 | + |
| 53 | +- Nuclear segmentation is performed using **Mesmer**, producing a nuclear mask in TIFF format for each core image |
| 54 | +- Cell/nuclear features (mean marker intensities, spatial coordinates, and morphological measurements) are quantified using **MCQUANT**, producing a CSV table of cells (rows) x features (columns) |
| 55 | +- The quantification table is converted to anndata format (h5ad), a common datatype used by most single-cell and spatial analysis packages |
| 56 | +- Automated cell phenotyping is performed using **Scimap** (see *Warning* section about GMM-based phenotyping) |
| 57 | +- **Scimap** and **Squidpy** are used for spatial analysis |
| 58 | +- Finally, **Vitessce** dashboards combine interactive image viewing with linked single-cell analysis components to allow for integrated initial data exploration |
| 59 | + |
| 60 | +## Tool developers' documentation |
| 61 | + |
| 62 | +- [MCMICRO](https://mcmicro.org/) |
| 63 | + - Basic Illumination |
| 64 | + - ASHLAR |
| 65 | + - UNetCoreograph |
| 66 | + - MCQuant |
| 67 | +- [Mesmer](https://deepcell.readthedocs.io/en/master/) |
| 68 | +- [Scimap](https://scimap-doc.readthedocs.io/en/latest/) |
| 69 | +- [Vitessce](https://vitessce.io/) |
| 70 | + |
| 71 | + |
| 72 | +## Tool references |
| 73 | + |
| 74 | +- Greenwald, N. F., G. Miller, E. Moen, A. Kong, A. Kagel et al., 2021 Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature Biotechnology 40: 555–565. 10.1038/s41587-021-01094-0 |
| 75 | +- Schapiro, D., A. Sokolov, C. Yapp, Y.-A. Chen, J. L. Muhlich et al., 2021 MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nature Methods 19: 311–315. 10.1038/s41592-021-01308-y |
| 76 | +- Virshup, I., S. Rybakov, F. J. Theis, P. Angerer, and F. A. Wolf, 2021 anndata: Annotated data. 10.1101/2021.12.16.473007 |
| 77 | +- Palla, G., H. Spitzer, M. Klein, D. Fischer, A. C. Schaar et al., 2022 Squidpy: a scalable framework for spatial omics analysis. Nature Methods 19: 171–178. 10.1038/s41592-021-01358-2 |
| 78 | +- Nirmal, A. J., and P. K. Sorger, 2024 SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data. Journal of Open Source Software 9: 6604. 10.21105/joss.06604 |
0 commit comments